Step |
Hyp |
Ref |
Expression |
1 |
|
domncan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domncan.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domncan.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
domncan.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
5 |
|
domncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
domncan.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
domnlcan.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
8 |
|
domnlcan.2 |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ↔ ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 = 𝑐 ↔ 𝑌 = 𝑐 ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) → 𝑌 = 𝑐 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) ) |
19 |
|
eqeq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑌 = 𝑐 ↔ 𝑌 = 𝑍 ) ) |
20 |
18 19
|
imbi12d |
⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) → 𝑌 = 𝑐 ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) → 𝑌 = 𝑍 ) ) ) |
21 |
1 2 3
|
isdomn4 |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
22 |
7 21
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
23 |
22
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
24 |
12 16 20 23 4 5 6
|
rspc3dv |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) → 𝑌 = 𝑍 ) ) |
25 |
8 24
|
mpd |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |