Metamath Proof Explorer
Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
domncan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
domncan.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
domncan.m |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
domncan.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
|
|
domncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
domncan.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
|
domncan.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
|
|
domnlcan.1 |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
|
Assertion |
domnlcan |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
domncan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domncan.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domncan.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
domncan.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
5 |
|
domncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
domncan.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
domncan.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
8 |
|
domnlcan.1 |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
9 |
1 2 3 4 5 6 7
|
domnlcanb |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ↔ 𝑌 = 𝑍 ) ) |
10 |
8 9
|
mpbid |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |