| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domneq0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | domneq0.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | domneq0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | an4 | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) )  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) ) ) | 
						
							| 5 |  | neanior | ⊢ ( ( 𝑋  ≠   0   ∧  𝑌  ≠   0  )  ↔  ¬  ( 𝑋  =   0   ∨  𝑌  =   0  ) ) | 
						
							| 6 | 1 2 3 | domneq0 | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ·  𝑌 )  =   0   ↔  ( 𝑋  =   0   ∨  𝑌  =   0  ) ) ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ·  𝑌 )  =   0   ↔  ( 𝑋  =   0   ∨  𝑌  =   0  ) ) ) | 
						
							| 8 | 7 | necon3abid | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ·  𝑌 )  ≠   0   ↔  ¬  ( 𝑋  =   0   ∨  𝑌  =   0  ) ) ) | 
						
							| 9 | 5 8 | bitr4id | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑌  ≠   0  )  ↔  ( 𝑋  ·  𝑌 )  ≠   0  ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑌  ≠   0  )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) ) | 
						
							| 11 | 10 | expimpd | ⊢ ( 𝑅  ∈  Domn  →  ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑋  ≠   0   ∧  𝑌  ≠   0  ) )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) ) | 
						
							| 12 | 4 11 | biimtrid | ⊢ ( 𝑅  ∈  Domn  →  ( ( ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) ) | 
						
							| 13 | 12 | 3impib | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) |