Step |
Hyp |
Ref |
Expression |
1 |
|
domneq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domneq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
domneq0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
an4 |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) |
5 |
|
neanior |
⊢ ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) |
6 |
1 2 3
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
7 |
6
|
3expb |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
8 |
7
|
necon3abid |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
9 |
5 8
|
bitr4id |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
11 |
10
|
expimpd |
⊢ ( 𝑅 ∈ Domn → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
12 |
4 11
|
syl5bi |
⊢ ( 𝑅 ∈ Domn → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
13 |
12
|
3impib |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |