Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | domnnzr | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
2 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
4 | 1 2 3 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) ) |
5 | 4 | simplbi | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |