Step |
Hyp |
Ref |
Expression |
1 |
|
domnrcan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domnrcan.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domnrcan.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
domnrcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
domnrcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
domnrcan.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) ) |
7 |
|
domnrcan.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
8 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) ↔ ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 = 𝑏 ↔ 𝑋 = 𝑏 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑋 = 𝑏 ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) ↔ ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 = 𝑏 ↔ 𝑋 = 𝑌 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑋 = 𝑏 ) ↔ ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) → 𝑋 = 𝑌 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑌 · 𝑐 ) = ( 𝑌 · 𝑍 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) ↔ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) ) |
19 |
18
|
imbi1d |
⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) → 𝑋 = 𝑌 ) ↔ ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) → 𝑋 = 𝑌 ) ) ) |
20 |
1 2 3
|
isdomn4r |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |
21 |
7 20
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |
22 |
21
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
23 |
11 15 19 22 4 5 6
|
rspc3dv |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) → 𝑋 = 𝑌 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
25 |
23 24
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |