Metamath Proof Explorer


Theorem domnring

Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Assertion domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 domnnzr ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing )
2 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
3 1 2 syl ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )