Metamath Proof Explorer


Theorem domnrrg

Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses isdomn2.b 𝐵 = ( Base ‘ 𝑅 )
isdomn2.t 𝐸 = ( RLReg ‘ 𝑅 )
isdomn2.z 0 = ( 0g𝑅 )
Assertion domnrrg ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸 )

Proof

Step Hyp Ref Expression
1 isdomn2.b 𝐵 = ( Base ‘ 𝑅 )
2 isdomn2.t 𝐸 = ( RLReg ‘ 𝑅 )
3 isdomn2.z 0 = ( 0g𝑅 )
4 1 2 3 isdomn2 ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) )
5 4 simprbi ( 𝑅 ∈ Domn → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 )
6 5 3ad2ant1 ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 )
7 simp2 ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵 )
8 simp3 ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
9 eldifsn ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋𝐵𝑋0 ) )
10 7 8 9 sylanbrc ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) )
11 6 10 sseldd ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸 )