| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | isdomn2.t | ⊢ 𝐸  =  ( RLReg ‘ 𝑅 ) | 
						
							| 3 |  | isdomn2.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 2 3 | isdomn2 | ⊢ ( 𝑅  ∈  Domn  ↔  ( 𝑅  ∈  NzRing  ∧  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) ) | 
						
							| 5 | 4 | simprbi | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  𝑋  ≠   0  ) | 
						
							| 9 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) | 
						
							| 10 | 7 8 9 | sylanbrc | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  𝑋  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 11 | 6 10 | sseldd | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  𝑋  ∈  𝐸 ) |