Metamath Proof Explorer


Theorem domnsym

Description: Theorem 22(i) of Suppes p. 97. (Contributed by NM, 10-Jun-1998)

Ref Expression
Assertion domnsym ( 𝐴𝐵 → ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
2 sdomnsym ( 𝐴𝐵 → ¬ 𝐵𝐴 )
3 sdomnen ( 𝐵𝐴 → ¬ 𝐵𝐴 )
4 ensym ( 𝐴𝐵𝐵𝐴 )
5 3 4 nsyl3 ( 𝐴𝐵 → ¬ 𝐵𝐴 )
6 2 5 jaoi ( ( 𝐴𝐵𝐴𝐵 ) → ¬ 𝐵𝐴 )
7 1 6 sylbi ( 𝐴𝐵 → ¬ 𝐵𝐴 )