Metamath Proof Explorer
		
		
		
		Description:  Theorem 22(i) of Suppes p. 97.  (Contributed by NM, 10-Jun-1998)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | domnsym | ⊢  ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdom2 | ⊢ ( 𝐴  ≼  𝐵  ↔  ( 𝐴  ≺  𝐵  ∨  𝐴  ≈  𝐵 ) ) | 
						
							| 2 |  | sdomnsym | ⊢ ( 𝐴  ≺  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 3 |  | sdomnen | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 4 |  | ensym | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 ) | 
						
							| 5 | 3 4 | nsyl3 | ⊢ ( 𝐴  ≈  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 6 | 2 5 | jaoi | ⊢ ( ( 𝐴  ≺  𝐵  ∨  𝐴  ≈  𝐵 )  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 7 | 1 6 | sylbi | ⊢ ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 ) |