Metamath Proof Explorer
Description: Theorem 22(i) of Suppes p. 97. (Contributed by NM, 10-Jun-1998)
|
|
Ref |
Expression |
|
Assertion |
domnsym |
⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
brdom2 |
⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) |
2 |
|
sdomnsym |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
3 |
|
sdomnen |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) |
4 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
5 |
3 4
|
nsyl3 |
⊢ ( 𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
6 |
2 5
|
jaoi |
⊢ ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
7 |
1 6
|
sylbi |
⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |