Metamath Proof Explorer


Theorem domnsymfi

Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)

Ref Expression
Assertion domnsymfi ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
2 sdomnen ( 𝐴𝐵 → ¬ 𝐴𝐵 )
3 2 adantl ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐴𝐵 )
4 sdomdom ( 𝐴𝐵𝐴𝐵 )
5 sdomdom ( 𝐵𝐴𝐵𝐴 )
6 sbthfi ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵 ) → 𝐵𝐴 )
7 ensymfib ( 𝐴 ∈ Fin → ( 𝐴𝐵𝐵𝐴 ) )
8 7 3ad2ant1 ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
9 6 8 mpbird ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵 ) → 𝐴𝐵 )
10 5 9 syl3an2 ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵 ) → 𝐴𝐵 )
11 4 10 syl3an3 ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵 ) → 𝐴𝐵 )
12 11 3com23 ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
13 12 3expa ( ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) ∧ 𝐵𝐴 ) → 𝐴𝐵 )
14 3 13 mtand ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )
15 sdomnen ( 𝐵𝐴 → ¬ 𝐵𝐴 )
16 7 biimpa ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → 𝐵𝐴 )
17 15 16 nsyl3 ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )
18 14 17 jaodan ( ( 𝐴 ∈ Fin ∧ ( 𝐴𝐵𝐴𝐵 ) ) → ¬ 𝐵𝐴 )
19 1 18 sylan2b ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ) → ¬ 𝐵𝐴 )