Metamath Proof Explorer


Theorem domsdomtr

Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of Suppes p. 97. (Contributed by NM, 10-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion domsdomtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sdomdom ( 𝐵𝐶𝐵𝐶 )
2 domtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 1 2 sylan2 ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 simpr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐵𝐶 )
5 ensym ( 𝐴𝐶𝐶𝐴 )
6 simpl ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐵 )
7 endomtr ( ( 𝐶𝐴𝐴𝐵 ) → 𝐶𝐵 )
8 5 6 7 syl2anr ( ( ( 𝐴𝐵𝐵𝐶 ) ∧ 𝐴𝐶 ) → 𝐶𝐵 )
9 domnsym ( 𝐶𝐵 → ¬ 𝐵𝐶 )
10 8 9 syl ( ( ( 𝐴𝐵𝐵𝐶 ) ∧ 𝐴𝐶 ) → ¬ 𝐵𝐶 )
11 10 ex ( ( 𝐴𝐵𝐵𝐶 ) → ( 𝐴𝐶 → ¬ 𝐵𝐶 ) )
12 4 11 mt2d ( ( 𝐴𝐵𝐵𝐶 ) → ¬ 𝐴𝐶 )
13 brsdom ( 𝐴𝐶 ↔ ( 𝐴𝐶 ∧ ¬ 𝐴𝐶 ) )
14 3 12 13 sylanbrc ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )