Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶 ) |
2 |
|
domtr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐵 ≺ 𝐶 ) |
5 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴 ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≼ 𝐵 ) |
7 |
|
endomtr |
⊢ ( ( 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐶 ≼ 𝐵 ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → 𝐶 ≼ 𝐵 ) |
9 |
|
domnsym |
⊢ ( 𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶 ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → ¬ 𝐵 ≺ 𝐶 ) |
11 |
10
|
ex |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → ( 𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶 ) ) |
12 |
4 11
|
mt2d |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → ¬ 𝐴 ≈ 𝐶 ) |
13 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝐶 ↔ ( 𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶 ) ) |
14 |
3 12 13
|
sylanbrc |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |