| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ⊆ 𝐶 ) |
| 4 |
|
reldom |
⊢ Rel ≼ |
| 5 |
4
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ V ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
| 8 |
3 6 7
|
jca32 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) ) |
| 9 |
|
f1ss |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝑓 : 𝐴 –1-1→ 𝐶 ) |
| 10 |
|
vex |
⊢ 𝑓 ∈ V |
| 11 |
|
f1dom4g |
⊢ ( ( ( 𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 12 |
10 11
|
mp3anl1 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑓 : 𝐴 –1-1→ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) |
| 14 |
9 13
|
sylan |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) |
| 15 |
14
|
expl |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → ( ( 𝐵 ⊆ 𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ≼ 𝐶 ) ) |
| 17 |
2 8 16
|
sylc |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐶 ) |