Metamath Proof Explorer


Theorem domssr

Description: If C is a superset of B and B dominates A , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion domssr ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 brdomi ( 𝐴𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )
2 1 3ad2ant3 ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )
3 simp2 ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → 𝐵𝐶 )
4 reldom Rel ≼
5 4 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
6 5 3ad2ant3 ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → 𝐴 ∈ V )
7 simp1 ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → 𝐶𝑉 )
8 3 6 7 jca32 ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → ( 𝐵𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ) )
9 f1ss ( ( 𝑓 : 𝐴1-1𝐵𝐵𝐶 ) → 𝑓 : 𝐴1-1𝐶 )
10 vex 𝑓 ∈ V
11 f1dom4g ( ( ( 𝑓 ∈ V ∧ 𝐴 ∈ V ∧ 𝐶𝑉 ) ∧ 𝑓 : 𝐴1-1𝐶 ) → 𝐴𝐶 )
12 10 11 mp3anl1 ( ( ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ∧ 𝑓 : 𝐴1-1𝐶 ) → 𝐴𝐶 )
13 12 ancoms ( ( 𝑓 : 𝐴1-1𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ) → 𝐴𝐶 )
14 9 13 sylan ( ( ( 𝑓 : 𝐴1-1𝐵𝐵𝐶 ) ∧ ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ) → 𝐴𝐶 )
15 14 expl ( 𝑓 : 𝐴1-1𝐵 → ( ( 𝐵𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ) → 𝐴𝐶 ) )
16 15 exlimiv ( ∃ 𝑓 𝑓 : 𝐴1-1𝐵 → ( ( 𝐵𝐶 ∧ ( 𝐴 ∈ V ∧ 𝐶𝑉 ) ) → 𝐴𝐶 ) )
17 2 8 16 sylc ( ( 𝐶𝑉𝐵𝐶𝐴𝐵 ) → 𝐴𝐶 )