Metamath Proof Explorer


Theorem domtrfi

Description: Transitivity of dominance relation when B is finite, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion domtrfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 domfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵 ) → 𝐴 ∈ Fin )
2 1 3adant3 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴 ∈ Fin )
3 domtrfil ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 2 3 syld3an1 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )