Metamath Proof Explorer


Theorem domtrfir

Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion domtrfir ( ( 𝐶 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 domfi ( ( 𝐶 ∈ Fin ∧ 𝐵𝐶 ) → 𝐵 ∈ Fin )
2 1 3adant2 ( ( 𝐶 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐵 ∈ Fin )
3 domtrfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 2 3 syld3an1 ( ( 𝐶 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )