Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | domtrfir | ⊢ ( ( 𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domfi | ⊢ ( ( 𝐶 ∈ Fin ∧ 𝐵 ≼ 𝐶 ) → 𝐵 ∈ Fin ) | |
2 | 1 | 3adant2 | ⊢ ( ( 𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐵 ∈ Fin ) |
3 | domtrfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
4 | 2 3 | syld3an1 | ⊢ ( ( 𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |