Description: Trichotomy law for dominance and strict dominance. This theorem is equivalent to the Axiom of Choice. (Contributed by NM, 4-Jan-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numth3 | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ dom card ) | |
| 2 | numth3 | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ dom card ) | |
| 3 | domtri2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |