Step |
Hyp |
Ref |
Expression |
1 |
|
domtriom.1 |
⊢ 𝐴 ∈ V |
2 |
|
domnsym |
⊢ ( ω ≼ 𝐴 → ¬ 𝐴 ≺ ω ) |
3 |
|
isfinite |
⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) |
4 |
|
eqid |
⊢ { 𝑦 ∣ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛 ) } = { 𝑦 ∣ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛 ) } |
5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑏 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑛 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑏 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑘 ) ) |
7 |
6
|
cbviunv |
⊢ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) = ∪ 𝑘 ∈ 𝑚 ( 𝑏 ‘ 𝑘 ) |
8 |
|
iuneq1 |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 ( 𝑏 ‘ 𝑘 ) = ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) |
9 |
7 8
|
eqtrid |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) = ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) |
10 |
5 9
|
difeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑏 ‘ 𝑚 ) ∖ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) ) = ( ( 𝑏 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑚 ∈ ω ↦ ( ( 𝑏 ‘ 𝑚 ) ∖ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) ) ) = ( 𝑛 ∈ ω ↦ ( ( 𝑏 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) ) |
12 |
1 4 11
|
domtriomlem |
⊢ ( ¬ 𝐴 ∈ Fin → ω ≼ 𝐴 ) |
13 |
3 12
|
sylnbir |
⊢ ( ¬ 𝐴 ≺ ω → ω ≼ 𝐴 ) |
14 |
2 13
|
impbii |
⊢ ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) |