Metamath Proof Explorer


Theorem domtriom

Description: Trichotomy of equinumerosity for _om , proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 ) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypothesis domtriom.1 𝐴 ∈ V
Assertion domtriom ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω )

Proof

Step Hyp Ref Expression
1 domtriom.1 𝐴 ∈ V
2 domnsym ( ω ≼ 𝐴 → ¬ 𝐴 ≺ ω )
3 isfinite ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω )
4 eqid { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } = { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) }
5 fveq2 ( 𝑚 = 𝑛 → ( 𝑏𝑚 ) = ( 𝑏𝑛 ) )
6 fveq2 ( 𝑗 = 𝑘 → ( 𝑏𝑗 ) = ( 𝑏𝑘 ) )
7 6 cbviunv 𝑗𝑚 ( 𝑏𝑗 ) = 𝑘𝑚 ( 𝑏𝑘 )
8 iuneq1 ( 𝑚 = 𝑛 𝑘𝑚 ( 𝑏𝑘 ) = 𝑘𝑛 ( 𝑏𝑘 ) )
9 7 8 eqtrid ( 𝑚 = 𝑛 𝑗𝑚 ( 𝑏𝑗 ) = 𝑘𝑛 ( 𝑏𝑘 ) )
10 5 9 difeq12d ( 𝑚 = 𝑛 → ( ( 𝑏𝑚 ) ∖ 𝑗𝑚 ( 𝑏𝑗 ) ) = ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
11 10 cbvmptv ( 𝑚 ∈ ω ↦ ( ( 𝑏𝑚 ) ∖ 𝑗𝑚 ( 𝑏𝑗 ) ) ) = ( 𝑛 ∈ ω ↦ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
12 1 4 11 domtriomlem ( ¬ 𝐴 ∈ Fin → ω ≼ 𝐴 )
13 3 12 sylnbir ( ¬ 𝐴 ≺ ω → ω ≼ 𝐴 )
14 2 13 impbii ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω )