| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbth |
⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 2 |
1
|
expcom |
⊢ ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) ) |
| 4 |
|
iman |
⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
| 5 |
|
brsdom |
⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
| 6 |
4 5
|
xchbinxr |
⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ 𝐵 ≺ 𝐴 ) |
| 7 |
3 6
|
imbitrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 8 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 9 |
|
ssdomg |
⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 10 |
8 9
|
syld |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 12 |
11
|
con3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵 ) ) |
| 13 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 14 |
13
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 15 |
12 14
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
| 16 |
|
ssdomg |
⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
| 18 |
15 17
|
syld |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| 19 |
|
ensym |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) |
| 20 |
|
endom |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵 ) |
| 22 |
21
|
con3i |
⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴 ) |
| 23 |
18 22
|
jca2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) ) |
| 24 |
23 5
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴 ) ) |
| 25 |
24
|
con1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 26 |
7 25
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |