Step |
Hyp |
Ref |
Expression |
1 |
|
sbth |
⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
2 |
1
|
expcom |
⊢ ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ) ) |
4 |
|
iman |
⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
5 |
|
brsdom |
⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
6 |
4 5
|
xchbinxr |
⊢ ( ( 𝐵 ≼ 𝐴 → 𝐵 ≈ 𝐴 ) ↔ ¬ 𝐵 ≺ 𝐴 ) |
7 |
3 6
|
syl6ib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
8 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
9 |
|
ssdomg |
⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
10 |
8 9
|
syld |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
12 |
11
|
con3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ∈ 𝐵 ) ) |
13 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
14 |
13
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
15 |
12 14
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
16 |
|
ssdomg |
⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
18 |
15 17
|
syld |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
19 |
|
ensym |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) |
20 |
|
endom |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) |
21 |
19 20
|
syl |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵 ) |
22 |
21
|
con3i |
⊢ ( ¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴 ) |
23 |
18 22
|
jca2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) ) |
24 |
23 5
|
syl6ibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴 ) ) |
25 |
24
|
con1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
26 |
7 25
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |