Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) |
2 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐵 ≈ 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
4 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
5 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
8 |
|
uneq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∪ 𝑋 ) = ( ∅ ∪ 𝑋 ) ) |
9 |
|
imaeq2 |
⊢ ( 𝑎 = ∅ → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ∅ ) ) |
10 |
9
|
uneq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) |
11 |
8 10
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) ) |
12 |
11
|
bibi1d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
13 |
7 12
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
14 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐴 ↔ 𝑏 ⊆ 𝐴 ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
16 |
15
|
anbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
17 |
|
uneq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∪ 𝑋 ) = ( 𝑏 ∪ 𝑋 ) ) |
18 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝑏 ) ) |
19 |
18
|
uneq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
20 |
17 19
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
21 |
20
|
bibi1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
22 |
16 21
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
23 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
26 |
|
uneq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∪ 𝑋 ) = ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ) |
27 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ) |
28 |
27
|
uneq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) |
29 |
26 28
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) ) |
30 |
29
|
bibi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
31 |
25 30
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
32 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
33 |
32
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
35 |
|
uneq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∪ 𝑋 ) = ( 𝐴 ∪ 𝑋 ) ) |
36 |
|
imaeq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝐴 ) ) |
37 |
36
|
uneq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) |
38 |
35 37
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) ) |
39 |
38
|
bibi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
40 |
34 39
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
41 |
|
uncom |
⊢ ( ∅ ∪ 𝑋 ) = ( 𝑋 ∪ ∅ ) |
42 |
|
un0 |
⊢ ( 𝑋 ∪ ∅ ) = 𝑋 |
43 |
41 42
|
eqtri |
⊢ ( ∅ ∪ 𝑋 ) = 𝑋 |
44 |
|
ima0 |
⊢ ( 𝑓 “ ∅ ) = ∅ |
45 |
44
|
uneq1i |
⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = ( ∅ ∪ 𝑌 ) |
46 |
|
uncom |
⊢ ( ∅ ∪ 𝑌 ) = ( 𝑌 ∪ ∅ ) |
47 |
|
un0 |
⊢ ( 𝑌 ∪ ∅ ) = 𝑌 |
48 |
46 47
|
eqtri |
⊢ ( ∅ ∪ 𝑌 ) = 𝑌 |
49 |
45 48
|
eqtri |
⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = 𝑌 |
50 |
43 49
|
breq12i |
⊢ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) |
51 |
50
|
a1i |
⊢ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
52 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
53 |
|
sstr2 |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) ) |
54 |
52 53
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) |
55 |
54
|
anim1i |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
56 |
55
|
anim1i |
⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) |
57 |
56
|
imim1i |
⊢ ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
58 |
|
uncom |
⊢ ( 𝑏 ∪ { 𝑐 } ) = ( { 𝑐 } ∪ 𝑏 ) |
59 |
58
|
uneq1i |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) |
60 |
|
unass |
⊢ ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) |
61 |
59 60
|
eqtri |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) |
62 |
61
|
a1i |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ) |
63 |
|
imaundi |
⊢ ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) |
64 |
|
simprlr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
65 |
|
f1ofn |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 Fn 𝐴 ) |
66 |
64 65
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 Fn 𝐴 ) |
67 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
68 |
|
sstr2 |
⊢ ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) ) |
69 |
67 68
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) |
70 |
|
vex |
⊢ 𝑐 ∈ V |
71 |
70
|
snss |
⊢ ( 𝑐 ∈ 𝐴 ↔ { 𝑐 } ⊆ 𝐴 ) |
72 |
69 71
|
sylibr |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑐 ∈ 𝐴 ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑐 ∈ 𝐴 ) |
74 |
73
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑐 ∈ 𝐴 ) |
75 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑐 ∈ 𝐴 ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) |
76 |
66 74 75
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) |
77 |
76
|
eqcomd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ { 𝑐 } ) = { ( 𝑓 ‘ 𝑐 ) } ) |
78 |
77
|
uneq2d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
79 |
63 78
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
80 |
79
|
uneq1d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) ) |
81 |
|
uncom |
⊢ ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) |
82 |
81
|
uneq1i |
⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) |
83 |
|
unass |
⊢ ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
84 |
82 83
|
eqtri |
⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
85 |
80 84
|
eqtrdi |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
86 |
62 85
|
breq12d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) ) |
87 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑏 ) |
88 |
|
incom |
⊢ ( 𝑋 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑋 ) |
89 |
|
simprrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐴 ∩ 𝑋 ) = ∅ ) |
90 |
88 89
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑋 ∩ 𝐴 ) = ∅ ) |
91 |
|
minel |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ ( 𝑋 ∩ 𝐴 ) = ∅ ) → ¬ 𝑐 ∈ 𝑋 ) |
92 |
74 90 91
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑋 ) |
93 |
|
ioran |
⊢ ( ¬ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) |
94 |
|
elun |
⊢ ( 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ) |
95 |
93 94
|
xchnxbir |
⊢ ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) |
96 |
87 92 95
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ) |
97 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ 𝑐 ∈ 𝑏 ) |
98 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
99 |
98
|
adantl |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
100 |
54
|
adantr |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
101 |
|
f1elima |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑐 ∈ 𝐴 ∧ 𝑏 ⊆ 𝐴 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) |
102 |
99 73 100 101
|
syl3anc |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) |
103 |
102
|
biimpd |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
104 |
103
|
adantl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
105 |
97 104
|
mtod |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
106 |
105
|
adantrr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
107 |
|
f1of |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
108 |
64 107
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
109 |
108 74
|
ffvelrnd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ) |
110 |
|
incom |
⊢ ( 𝑌 ∩ 𝐵 ) = ( 𝐵 ∩ 𝑌 ) |
111 |
|
simprrr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐵 ∩ 𝑌 ) = ∅ ) |
112 |
110 111
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑌 ∩ 𝐵 ) = ∅ ) |
113 |
|
minel |
⊢ ( ( ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑌 ∩ 𝐵 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) |
114 |
109 112 113
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) |
115 |
|
ioran |
⊢ ( ¬ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
116 |
|
elun |
⊢ ( ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
117 |
115 116
|
xchnxbir |
⊢ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
118 |
106 114 117
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
119 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑐 ) ∈ V |
120 |
70 119
|
domunsncan |
⊢ ( ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
121 |
96 118 120
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
122 |
86 121
|
bitrd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
123 |
|
bitr |
⊢ ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ∧ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
124 |
123
|
ex |
⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
125 |
122 124
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
126 |
125
|
ex |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
127 |
126
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
128 |
57 127
|
syl5 |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
129 |
13 22 31 40 51 128
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
130 |
129
|
expd |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
131 |
4 130
|
mpani |
⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
132 |
131
|
3imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
133 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
134 |
|
foima |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) |
135 |
133 134
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) |
136 |
135
|
uneq1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) = ( 𝐵 ∪ 𝑌 ) ) |
137 |
136
|
breq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ) ) |
138 |
137
|
bibi1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
139 |
138
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
140 |
132 139
|
mpbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
141 |
140
|
3exp |
⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
142 |
141
|
exlimdv |
⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
143 |
3 142
|
syl5 |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≈ 𝐴 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
144 |
143
|
imp31 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |