| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdom0 | ⊢ ¬  𝐴  ≺  ∅ | 
						
							| 2 |  | breq2 | ⊢ ( 𝐵  =  ∅  →  ( 𝐴  ≺  𝐵  ↔  𝐴  ≺  ∅ ) ) | 
						
							| 3 | 1 2 | mtbiri | ⊢ ( 𝐵  =  ∅  →  ¬  𝐴  ≺  𝐵 ) | 
						
							| 4 | 3 | con2i | ⊢ ( 𝐴  ≺  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 5 |  | neq0 | ⊢ ( ¬  𝐵  =  ∅  ↔  ∃ 𝑧 𝑧  ∈  𝐵 ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝐴  ≺  𝐵  →  ∃ 𝑧 𝑧  ∈  𝐵 ) | 
						
							| 7 |  | domdifsn | ⊢ ( 𝐴  ≺  𝐵  →  𝐴  ≼  ( 𝐵  ∖  { 𝑧 } ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝐴  ≼  ( 𝐵  ∖  { 𝑧 } ) ) | 
						
							| 9 |  | en2sn | ⊢ ( ( 𝐶  ∈  V  ∧  𝑧  ∈  V )  →  { 𝐶 }  ≈  { 𝑧 } ) | 
						
							| 10 | 9 | elvd | ⊢ ( 𝐶  ∈  V  →  { 𝐶 }  ≈  { 𝑧 } ) | 
						
							| 11 |  | endom | ⊢ ( { 𝐶 }  ≈  { 𝑧 }  →  { 𝐶 }  ≼  { 𝑧 } ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐶  ∈  V  →  { 𝐶 }  ≼  { 𝑧 } ) | 
						
							| 13 |  | snprc | ⊢ ( ¬  𝐶  ∈  V  ↔  { 𝐶 }  =  ∅ ) | 
						
							| 14 | 13 | biimpi | ⊢ ( ¬  𝐶  ∈  V  →  { 𝐶 }  =  ∅ ) | 
						
							| 15 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 16 | 15 | 0dom | ⊢ ∅  ≼  { 𝑧 } | 
						
							| 17 | 14 16 | eqbrtrdi | ⊢ ( ¬  𝐶  ∈  V  →  { 𝐶 }  ≼  { 𝑧 } ) | 
						
							| 18 | 12 17 | pm2.61i | ⊢ { 𝐶 }  ≼  { 𝑧 } | 
						
							| 19 |  | disjdifr | ⊢ ( ( 𝐵  ∖  { 𝑧 } )  ∩  { 𝑧 } )  =  ∅ | 
						
							| 20 |  | undom | ⊢ ( ( ( 𝐴  ≼  ( 𝐵  ∖  { 𝑧 } )  ∧  { 𝐶 }  ≼  { 𝑧 } )  ∧  ( ( 𝐵  ∖  { 𝑧 } )  ∩  { 𝑧 } )  =  ∅ )  →  ( 𝐴  ∪  { 𝐶 } )  ≼  ( ( 𝐵  ∖  { 𝑧 } )  ∪  { 𝑧 } ) ) | 
						
							| 21 | 19 20 | mpan2 | ⊢ ( ( 𝐴  ≼  ( 𝐵  ∖  { 𝑧 } )  ∧  { 𝐶 }  ≼  { 𝑧 } )  →  ( 𝐴  ∪  { 𝐶 } )  ≼  ( ( 𝐵  ∖  { 𝑧 } )  ∪  { 𝑧 } ) ) | 
						
							| 22 | 8 18 21 | sylancl | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝐴  ∪  { 𝐶 } )  ≼  ( ( 𝐵  ∖  { 𝑧 } )  ∪  { 𝑧 } ) ) | 
						
							| 23 |  | uncom | ⊢ ( ( 𝐵  ∖  { 𝑧 } )  ∪  { 𝑧 } )  =  ( { 𝑧 }  ∪  ( 𝐵  ∖  { 𝑧 } ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝐵 ) | 
						
							| 25 | 24 | snssd | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  { 𝑧 }  ⊆  𝐵 ) | 
						
							| 26 |  | undif | ⊢ ( { 𝑧 }  ⊆  𝐵  ↔  ( { 𝑧 }  ∪  ( 𝐵  ∖  { 𝑧 } ) )  =  𝐵 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( { 𝑧 }  ∪  ( 𝐵  ∖  { 𝑧 } ) )  =  𝐵 ) | 
						
							| 28 | 23 27 | eqtrid | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝐵  ∖  { 𝑧 } )  ∪  { 𝑧 } )  =  𝐵 ) | 
						
							| 29 | 22 28 | breqtrd | ⊢ ( ( 𝐴  ≺  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝐴  ∪  { 𝐶 } )  ≼  𝐵 ) | 
						
							| 30 | 6 29 | exlimddv | ⊢ ( 𝐴  ≺  𝐵  →  ( 𝐴  ∪  { 𝐶 } )  ≼  𝐵 ) |