Step |
Hyp |
Ref |
Expression |
1 |
|
sdom0 |
⊢ ¬ 𝐴 ≺ ∅ |
2 |
|
breq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ≺ 𝐵 ↔ 𝐴 ≺ ∅ ) ) |
3 |
1 2
|
mtbiri |
⊢ ( 𝐵 = ∅ → ¬ 𝐴 ≺ 𝐵 ) |
4 |
3
|
con2i |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 = ∅ ) |
5 |
|
neq0 |
⊢ ( ¬ 𝐵 = ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) |
6 |
4 5
|
sylib |
⊢ ( 𝐴 ≺ 𝐵 → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
7 |
|
domdifsn |
⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ) |
9 |
|
en2sn |
⊢ ( ( 𝐶 ∈ V ∧ 𝑧 ∈ V ) → { 𝐶 } ≈ { 𝑧 } ) |
10 |
9
|
elvd |
⊢ ( 𝐶 ∈ V → { 𝐶 } ≈ { 𝑧 } ) |
11 |
|
endom |
⊢ ( { 𝐶 } ≈ { 𝑧 } → { 𝐶 } ≼ { 𝑧 } ) |
12 |
10 11
|
syl |
⊢ ( 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } ) |
13 |
|
snprc |
⊢ ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ ) |
14 |
13
|
biimpi |
⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ ) |
15 |
|
snex |
⊢ { 𝑧 } ∈ V |
16 |
15
|
0dom |
⊢ ∅ ≼ { 𝑧 } |
17 |
14 16
|
eqbrtrdi |
⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } ) |
18 |
12 17
|
pm2.61i |
⊢ { 𝐶 } ≼ { 𝑧 } |
19 |
|
disjdifr |
⊢ ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ |
20 |
|
undom |
⊢ ( ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) ∧ ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
21 |
19 20
|
mpan2 |
⊢ ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
22 |
8 18 21
|
sylancl |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
23 |
|
uncom |
⊢ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) |
24 |
|
simpr |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
25 |
24
|
snssd |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → { 𝑧 } ⊆ 𝐵 ) |
26 |
|
undif |
⊢ ( { 𝑧 } ⊆ 𝐵 ↔ ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 ) |
28 |
23 27
|
eqtrid |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝐵 ) |
29 |
22 28
|
breqtrd |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 ) |
30 |
6 29
|
exlimddv |
⊢ ( 𝐴 ≺ 𝐵 → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 ) |