| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domunsncan.a |
⊢ 𝐴 ∈ V |
| 2 |
|
domunsncan.b |
⊢ 𝐵 ∈ V |
| 3 |
|
ssun2 |
⊢ 𝑌 ⊆ ( { 𝐵 } ∪ 𝑌 ) |
| 4 |
|
reldom |
⊢ Rel ≼ |
| 5 |
4
|
brrelex2i |
⊢ ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 6 |
5
|
adantl |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 7 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ ( { 𝐵 } ∪ 𝑌 ) ∧ ( { 𝐵 } ∪ 𝑌 ) ∈ V ) → 𝑌 ∈ V ) |
| 8 |
3 6 7
|
sylancr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → 𝑌 ∈ V ) |
| 9 |
|
brdomi |
⊢ ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → ∃ 𝑓 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) |
| 10 |
|
vex |
⊢ 𝑓 ∈ V |
| 11 |
10
|
resex |
⊢ ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∈ V |
| 12 |
|
simprr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) |
| 13 |
|
difss |
⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ⊆ ( { 𝐴 } ∪ 𝑋 ) |
| 14 |
|
f1ores |
⊢ ( ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ∧ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ⊆ ( { 𝐴 } ∪ 𝑋 ) ) → ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 16 |
|
f1oen3g |
⊢ ( ( ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∈ V ∧ ( 𝑓 ↾ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) : ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) –1-1-onto→ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 17 |
11 15 16
|
sylancr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ) |
| 18 |
|
df-f1 |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ↔ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ∧ Fun ◡ 𝑓 ) ) |
| 19 |
|
imadif |
⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 20 |
18 19
|
simplbiim |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 21 |
20
|
ad2antll |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) = ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 22 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 23 |
|
simprl |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑌 ∈ V ) |
| 24 |
|
unexg |
⊢ ( ( { 𝐵 } ∈ V ∧ 𝑌 ∈ V ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 25 |
22 23 24
|
sylancr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( { 𝐵 } ∪ 𝑌 ) ∈ V ) |
| 26 |
25
|
difexd |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∈ V ) |
| 27 |
|
f1f |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ) |
| 28 |
|
fimass |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) |
| 30 |
29
|
ad2antll |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ⊆ ( { 𝐵 } ∪ 𝑌 ) ) |
| 31 |
30
|
ssdifd |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 32 |
|
f1fn |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ) |
| 33 |
32
|
ad2antll |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ) |
| 34 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
| 35 |
|
elun1 |
⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) |
| 36 |
34 35
|
ax-mp |
⊢ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) |
| 37 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn ( { 𝐴 } ∪ 𝑋 ) ∧ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) |
| 38 |
33 36 37
|
sylancl |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) |
| 39 |
38
|
difeq2d |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) = ( ( { 𝐵 } ∪ 𝑌 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 40 |
31 39
|
sseqtrrd |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 41 |
|
ssdomg |
⊢ ( ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∈ V → ( ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ⊆ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) ) |
| 42 |
26 40 41
|
sylc |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 43 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) ⟶ ( { 𝐵 } ∪ 𝑌 ) ∧ 𝐴 ∈ ( { 𝐴 } ∪ 𝑋 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 44 |
27 36 43
|
sylancl |
⊢ ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 45 |
44
|
ad2antll |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 46 |
2
|
snid |
⊢ 𝐵 ∈ { 𝐵 } |
| 47 |
|
elun1 |
⊢ ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 48 |
46 47
|
mp1i |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) |
| 49 |
|
difsnen |
⊢ ( ( ( { 𝐵 } ∪ 𝑌 ) ∈ V ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( { 𝐵 } ∪ 𝑌 ) ∧ 𝐵 ∈ ( { 𝐵 } ∪ 𝑌 ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 50 |
25 45 48 49
|
syl3anc |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 51 |
|
domentr |
⊢ ( ( ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∧ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 52 |
42 50 51
|
syl2anc |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( 𝑓 “ ( { 𝐴 } ∪ 𝑋 ) ) ∖ ( 𝑓 “ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 53 |
21 52
|
eqbrtrd |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 54 |
|
endomtr |
⊢ ( ( ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≈ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ∧ ( 𝑓 “ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 55 |
17 53 54
|
syl2anc |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) ≼ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) ) |
| 56 |
|
uncom |
⊢ ( { 𝐴 } ∪ 𝑋 ) = ( 𝑋 ∪ { 𝐴 } ) |
| 57 |
56
|
difeq1i |
⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = ( ( 𝑋 ∪ { 𝐴 } ) ∖ { 𝐴 } ) |
| 58 |
|
difun2 |
⊢ ( ( 𝑋 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐴 } ) |
| 59 |
57 58
|
eqtri |
⊢ ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐴 } ) |
| 60 |
|
difsn |
⊢ ( ¬ 𝐴 ∈ 𝑋 → ( 𝑋 ∖ { 𝐴 } ) = 𝑋 ) |
| 61 |
59 60
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ 𝑋 → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = 𝑋 ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐴 } ∪ 𝑋 ) ∖ { 𝐴 } ) = 𝑋 ) |
| 63 |
|
uncom |
⊢ ( { 𝐵 } ∪ 𝑌 ) = ( 𝑌 ∪ { 𝐵 } ) |
| 64 |
63
|
difeq1i |
⊢ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = ( ( 𝑌 ∪ { 𝐵 } ) ∖ { 𝐵 } ) |
| 65 |
|
difun2 |
⊢ ( ( 𝑌 ∪ { 𝐵 } ) ∖ { 𝐵 } ) = ( 𝑌 ∖ { 𝐵 } ) |
| 66 |
64 65
|
eqtri |
⊢ ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = ( 𝑌 ∖ { 𝐵 } ) |
| 67 |
|
difsn |
⊢ ( ¬ 𝐵 ∈ 𝑌 → ( 𝑌 ∖ { 𝐵 } ) = 𝑌 ) |
| 68 |
66 67
|
eqtrid |
⊢ ( ¬ 𝐵 ∈ 𝑌 → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = 𝑌 ) |
| 69 |
68
|
ad2antlr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → ( ( { 𝐵 } ∪ 𝑌 ) ∖ { 𝐵 } ) = 𝑌 ) |
| 70 |
55 62 69
|
3brtr3d |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( 𝑌 ∈ V ∧ 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) ) ) → 𝑋 ≼ 𝑌 ) |
| 71 |
70
|
expr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 72 |
71
|
exlimdv |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( ∃ 𝑓 𝑓 : ( { 𝐴 } ∪ 𝑋 ) –1-1→ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 73 |
9 72
|
syl5 |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑌 ∈ V ) → ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) → 𝑋 ≼ 𝑌 ) ) |
| 74 |
73
|
impancom |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → ( 𝑌 ∈ V → 𝑋 ≼ 𝑌 ) ) |
| 75 |
8 74
|
mpd |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) → 𝑋 ≼ 𝑌 ) |
| 76 |
|
en2sn |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝐴 } ≈ { 𝐵 } ) |
| 77 |
1 2 76
|
mp2an |
⊢ { 𝐴 } ≈ { 𝐵 } |
| 78 |
|
endom |
⊢ ( { 𝐴 } ≈ { 𝐵 } → { 𝐴 } ≼ { 𝐵 } ) |
| 79 |
77 78
|
mp1i |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → { 𝐴 } ≼ { 𝐵 } ) |
| 80 |
|
simpr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → 𝑋 ≼ 𝑌 ) |
| 81 |
|
incom |
⊢ ( { 𝐵 } ∩ 𝑌 ) = ( 𝑌 ∩ { 𝐵 } ) |
| 82 |
|
disjsn |
⊢ ( ( 𝑌 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝑌 ) |
| 83 |
82
|
biimpri |
⊢ ( ¬ 𝐵 ∈ 𝑌 → ( 𝑌 ∩ { 𝐵 } ) = ∅ ) |
| 84 |
81 83
|
eqtrid |
⊢ ( ¬ 𝐵 ∈ 𝑌 → ( { 𝐵 } ∩ 𝑌 ) = ∅ ) |
| 85 |
84
|
ad2antlr |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → ( { 𝐵 } ∩ 𝑌 ) = ∅ ) |
| 86 |
|
undom |
⊢ ( ( ( { 𝐴 } ≼ { 𝐵 } ∧ 𝑋 ≼ 𝑌 ) ∧ ( { 𝐵 } ∩ 𝑌 ) = ∅ ) → ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) |
| 87 |
79 80 85 86
|
syl21anc |
⊢ ( ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) ∧ 𝑋 ≼ 𝑌 ) → ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ) |
| 88 |
75 87
|
impbida |
⊢ ( ( ¬ 𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌 ) → ( ( { 𝐴 } ∪ 𝑋 ) ≼ ( { 𝐵 } ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |