Step |
Hyp |
Ref |
Expression |
1 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
2 |
1
|
adantl |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex1i |
⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ∈ V ) |
5 |
|
0sdomg |
⊢ ( 𝑋 ∈ V → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑋 ≼ 𝑌 → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
8 |
2 7
|
mpbird |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ∅ ≺ 𝑋 ) |
9 |
|
simpl |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≼ 𝑌 ) |
10 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌 ) → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) |
12 |
11
|
ex |
⊢ ( 𝑋 ≼ 𝑌 → ( ¬ 𝑋 = ∅ → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) |
13 |
12
|
orrd |
⊢ ( 𝑋 ≼ 𝑌 → ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) |
14 |
3
|
brrelex2i |
⊢ ( 𝑋 ≼ 𝑌 → 𝑌 ∈ V ) |
15 |
|
brwdom |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑋 ≼ 𝑌 → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) ) |
17 |
13 16
|
mpbird |
⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌 ) |