Metamath Proof Explorer
Description: Add a zero in the unit places. (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypothesis |
dp20h.1 |
⊢ 𝐴 ∈ ℝ+ |
|
Assertion |
dp20h |
⊢ _ 0 𝐴 = ( 𝐴 / ; 1 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dp20h.1 |
⊢ 𝐴 ∈ ℝ+ |
| 2 |
|
df-dp2 |
⊢ _ 0 𝐴 = ( 0 + ( 𝐴 / ; 1 0 ) ) |
| 3 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 4 |
1 3
|
ax-mp |
⊢ 𝐴 ∈ ℂ |
| 5 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
| 6 |
5
|
nn0cni |
⊢ ; 1 0 ∈ ℂ |
| 7 |
|
0re |
⊢ 0 ∈ ℝ |
| 8 |
|
10pos |
⊢ 0 < ; 1 0 |
| 9 |
7 8
|
gtneii |
⊢ ; 1 0 ≠ 0 |
| 10 |
4 6 9
|
divcli |
⊢ ( 𝐴 / ; 1 0 ) ∈ ℂ |
| 11 |
10
|
addlidi |
⊢ ( 0 + ( 𝐴 / ; 1 0 ) ) = ( 𝐴 / ; 1 0 ) |
| 12 |
2 11
|
eqtri |
⊢ _ 0 𝐴 = ( 𝐴 / ; 1 0 ) |