Metamath Proof Explorer


Theorem dp20u

Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypothesis dp20u.1 𝐴 ∈ ℕ0
Assertion dp20u 𝐴 0 = 𝐴

Proof

Step Hyp Ref Expression
1 dp20u.1 𝐴 ∈ ℕ0
2 df-dp2 𝐴 0 = ( 𝐴 + ( 0 / 1 0 ) )
3 10nn0 1 0 ∈ ℕ0
4 3 nn0rei 1 0 ∈ ℝ
5 4 recni 1 0 ∈ ℂ
6 0re 0 ∈ ℝ
7 10pos 0 < 1 0
8 6 7 gtneii 1 0 ≠ 0
9 div0 ( ( 1 0 ∈ ℂ ∧ 1 0 ≠ 0 ) → ( 0 / 1 0 ) = 0 )
10 5 8 9 mp2an ( 0 / 1 0 ) = 0
11 10 oveq2i ( 𝐴 + ( 0 / 1 0 ) ) = ( 𝐴 + 0 )
12 1 nn0cni 𝐴 ∈ ℂ
13 12 addid1i ( 𝐴 + 0 ) = 𝐴
14 2 11 13 3eqtri 𝐴 0 = 𝐴