Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dp20u.1 | ⊢ 𝐴 ∈ ℕ0 | |
Assertion | dp20u | ⊢ _ 𝐴 0 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp20u.1 | ⊢ 𝐴 ∈ ℕ0 | |
2 | df-dp2 | ⊢ _ 𝐴 0 = ( 𝐴 + ( 0 / ; 1 0 ) ) | |
3 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
4 | 3 | nn0rei | ⊢ ; 1 0 ∈ ℝ |
5 | 4 | recni | ⊢ ; 1 0 ∈ ℂ |
6 | 0re | ⊢ 0 ∈ ℝ | |
7 | 10pos | ⊢ 0 < ; 1 0 | |
8 | 6 7 | gtneii | ⊢ ; 1 0 ≠ 0 |
9 | div0 | ⊢ ( ( ; 1 0 ∈ ℂ ∧ ; 1 0 ≠ 0 ) → ( 0 / ; 1 0 ) = 0 ) | |
10 | 5 8 9 | mp2an | ⊢ ( 0 / ; 1 0 ) = 0 |
11 | 10 | oveq2i | ⊢ ( 𝐴 + ( 0 / ; 1 0 ) ) = ( 𝐴 + 0 ) |
12 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
13 | 12 | addid1i | ⊢ ( 𝐴 + 0 ) = 𝐴 |
14 | 2 11 13 | 3eqtri | ⊢ _ 𝐴 0 = 𝐴 |