Description: Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dp2cl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → _ 𝐴 𝐵 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 | ⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) | |
2 | 10re | ⊢ ; 1 0 ∈ ℝ | |
3 | 10pos | ⊢ 0 < ; 1 0 | |
4 | 2 3 | gt0ne0ii | ⊢ ; 1 0 ≠ 0 |
5 | redivcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ; 1 0 ∈ ℝ ∧ ; 1 0 ≠ 0 ) → ( 𝐵 / ; 1 0 ) ∈ ℝ ) | |
6 | 2 4 5 | mp3an23 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 / ; 1 0 ) ∈ ℝ ) |
7 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / ; 1 0 ) ∈ ℝ ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ∈ ℝ ) | |
8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ∈ ℝ ) |
9 | 1 8 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → _ 𝐴 𝐵 ∈ ℝ ) |