Metamath Proof Explorer


Theorem dp2cl

Description: Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion dp2cl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 df-dp2 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / 1 0 ) )
2 10re 1 0 ∈ ℝ
3 10pos 0 < 1 0
4 2 3 gt0ne0ii 1 0 ≠ 0
5 redivcl ( ( 𝐵 ∈ ℝ ∧ 1 0 ∈ ℝ ∧ 1 0 ≠ 0 ) → ( 𝐵 / 1 0 ) ∈ ℝ )
6 2 4 5 mp3an23 ( 𝐵 ∈ ℝ → ( 𝐵 / 1 0 ) ∈ ℝ )
7 readdcl ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / 1 0 ) ∈ ℝ ) → ( 𝐴 + ( 𝐵 / 1 0 ) ) ∈ ℝ )
8 6 7 sylan2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 / 1 0 ) ) ∈ ℝ )
9 1 8 eqeltrid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 𝐵 ∈ ℝ )