Step |
Hyp |
Ref |
Expression |
1 |
|
dp2clq.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dp2clq.b |
⊢ 𝐵 ∈ ℚ |
3 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
4 |
|
nn0ssq |
⊢ ℕ0 ⊆ ℚ |
5 |
4 1
|
sselii |
⊢ 𝐴 ∈ ℚ |
6 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
7 |
4 6
|
sselii |
⊢ ; 1 0 ∈ ℚ |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
10pos |
⊢ 0 < ; 1 0 |
10 |
8 9
|
gtneii |
⊢ ; 1 0 ≠ 0 |
11 |
|
qdivcl |
⊢ ( ( 𝐵 ∈ ℚ ∧ ; 1 0 ∈ ℚ ∧ ; 1 0 ≠ 0 ) → ( 𝐵 / ; 1 0 ) ∈ ℚ ) |
12 |
2 7 10 11
|
mp3an |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℚ |
13 |
|
qaddcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( 𝐵 / ; 1 0 ) ∈ ℚ ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ∈ ℚ ) |
14 |
5 12 13
|
mp2an |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ∈ ℚ |
15 |
3 14
|
eqeltri |
⊢ _ 𝐴 𝐵 ∈ ℚ |