Metamath Proof Explorer


Theorem dp2eq1

Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion dp2eq1 ( 𝐴 = 𝐵 𝐴 𝐶 = 𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = 𝐵 → ( 𝐴 + ( 𝐶 / 1 0 ) ) = ( 𝐵 + ( 𝐶 / 1 0 ) ) )
2 df-dp2 𝐴 𝐶 = ( 𝐴 + ( 𝐶 / 1 0 ) )
3 df-dp2 𝐵 𝐶 = ( 𝐵 + ( 𝐶 / 1 0 ) )
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 𝐴 𝐶 = 𝐵 𝐶 )