Metamath Proof Explorer


Theorem dp2eq12i

Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Hypotheses dp2eq1i.1 𝐴 = 𝐵
dp2eq12i.2 𝐶 = 𝐷
Assertion dp2eq12i 𝐴 𝐶 = 𝐵 𝐷

Proof

Step Hyp Ref Expression
1 dp2eq1i.1 𝐴 = 𝐵
2 dp2eq12i.2 𝐶 = 𝐷
3 1 dp2eq1i 𝐴 𝐶 = 𝐵 𝐶
4 2 dp2eq2i 𝐵 𝐶 = 𝐵 𝐷
5 3 4 eqtri 𝐴 𝐶 = 𝐵 𝐷