Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dp2eq2 | ⊢ ( 𝐴 = 𝐵 → _ 𝐶 𝐴 = _ 𝐶 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / ; 1 0 ) = ( 𝐵 / ; 1 0 ) ) | |
2 | 1 | oveq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 + ( 𝐴 / ; 1 0 ) ) = ( 𝐶 + ( 𝐵 / ; 1 0 ) ) ) |
3 | df-dp2 | ⊢ _ 𝐶 𝐴 = ( 𝐶 + ( 𝐴 / ; 1 0 ) ) | |
4 | df-dp2 | ⊢ _ 𝐶 𝐵 = ( 𝐶 + ( 𝐵 / ; 1 0 ) ) | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → _ 𝐶 𝐴 = _ 𝐶 𝐵 ) |