Metamath Proof Explorer


Theorem dp2eq2

Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion dp2eq2 ( 𝐴 = 𝐵 𝐶 𝐴 = 𝐶 𝐵 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = 𝐵 → ( 𝐴 / 1 0 ) = ( 𝐵 / 1 0 ) )
2 1 oveq2d ( 𝐴 = 𝐵 → ( 𝐶 + ( 𝐴 / 1 0 ) ) = ( 𝐶 + ( 𝐵 / 1 0 ) ) )
3 df-dp2 𝐶 𝐴 = ( 𝐶 + ( 𝐴 / 1 0 ) )
4 df-dp2 𝐶 𝐵 = ( 𝐶 + ( 𝐵 / 1 0 ) )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 𝐶 𝐴 = 𝐶 𝐵 )