Step |
Hyp |
Ref |
Expression |
1 |
|
dp2lt10.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dp2lt10.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dp2lt10.1 |
⊢ 𝐴 < ; 1 0 |
4 |
|
dp2lt10.2 |
⊢ 𝐵 < ; 1 0 |
5 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
6 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
7 |
3 6
|
breqtrri |
⊢ 𝐴 < ( 9 + 1 ) |
8 |
1
|
nn0zi |
⊢ 𝐴 ∈ ℤ |
9 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
10 |
9
|
nn0zi |
⊢ 9 ∈ ℤ |
11 |
|
zleltp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 9 ∈ ℤ ) → ( 𝐴 ≤ 9 ↔ 𝐴 < ( 9 + 1 ) ) ) |
12 |
8 10 11
|
mp2an |
⊢ ( 𝐴 ≤ 9 ↔ 𝐴 < ( 9 + 1 ) ) |
13 |
7 12
|
mpbir |
⊢ 𝐴 ≤ 9 |
14 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
15 |
14 2
|
sselii |
⊢ 𝐵 ∈ ℝ |
16 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
17 |
|
10pos |
⊢ 0 < ; 1 0 |
18 |
16 17
|
elrpii |
⊢ ; 1 0 ∈ ℝ+ |
19 |
|
divlt1lt |
⊢ ( ( 𝐵 ∈ ℝ ∧ ; 1 0 ∈ ℝ+ ) → ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) ) |
20 |
15 18 19
|
mp2an |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) |
21 |
4 20
|
mpbir |
⊢ ( 𝐵 / ; 1 0 ) < 1 |
22 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
23 |
|
0re |
⊢ 0 ∈ ℝ |
24 |
23 17
|
gtneii |
⊢ ; 1 0 ≠ 0 |
25 |
15 16 24
|
redivcli |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℝ |
26 |
22 25
|
pm3.2i |
⊢ ( 𝐴 ∈ ℝ ∧ ( 𝐵 / ; 1 0 ) ∈ ℝ ) |
27 |
|
9re |
⊢ 9 ∈ ℝ |
28 |
|
1re |
⊢ 1 ∈ ℝ |
29 |
27 28
|
pm3.2i |
⊢ ( 9 ∈ ℝ ∧ 1 ∈ ℝ ) |
30 |
|
leltadd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / ; 1 0 ) ∈ ℝ ) ∧ ( 9 ∈ ℝ ∧ 1 ∈ ℝ ) ) → ( ( 𝐴 ≤ 9 ∧ ( 𝐵 / ; 1 0 ) < 1 ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 9 + 1 ) ) ) |
31 |
26 29 30
|
mp2an |
⊢ ( ( 𝐴 ≤ 9 ∧ ( 𝐵 / ; 1 0 ) < 1 ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 9 + 1 ) ) |
32 |
13 21 31
|
mp2an |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 9 + 1 ) |
33 |
32 6
|
breqtri |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ; 1 0 |
34 |
5 33
|
eqbrtri |
⊢ _ 𝐴 𝐵 < ; 1 0 |