| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpmul.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
dpmul.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
dpmul.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
dpmul.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
dpmul.e |
⊢ 𝐸 ∈ ℕ0 |
| 6 |
|
dpadd.f |
⊢ 𝐹 ∈ ℕ0 |
| 7 |
|
dpadd.1 |
⊢ ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) = ; 𝐸 𝐹 |
| 8 |
1 2
|
deccl |
⊢ ; 𝐴 𝐵 ∈ ℕ0 |
| 9 |
8
|
nn0cni |
⊢ ; 𝐴 𝐵 ∈ ℂ |
| 10 |
3 4
|
deccl |
⊢ ; 𝐶 𝐷 ∈ ℕ0 |
| 11 |
10
|
nn0cni |
⊢ ; 𝐶 𝐷 ∈ ℂ |
| 12 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
| 13 |
12
|
nncni |
⊢ ; 1 0 ∈ ℂ |
| 14 |
12
|
nnne0i |
⊢ ; 1 0 ≠ 0 |
| 15 |
9 11 13 14
|
divdiri |
⊢ ( ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) / ; 1 0 ) = ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) |
| 16 |
7
|
oveq1i |
⊢ ( ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) / ; 1 0 ) = ( ; 𝐸 𝐹 / ; 1 0 ) |
| 17 |
15 16
|
eqtr3i |
⊢ ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) = ( ; 𝐸 𝐹 / ; 1 0 ) |
| 18 |
2
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
| 19 |
1 18
|
decdiv10 |
⊢ ( ; 𝐴 𝐵 / ; 1 0 ) = ( 𝐴 . 𝐵 ) |
| 20 |
4
|
nn0rei |
⊢ 𝐷 ∈ ℝ |
| 21 |
3 20
|
decdiv10 |
⊢ ( ; 𝐶 𝐷 / ; 1 0 ) = ( 𝐶 . 𝐷 ) |
| 22 |
19 21
|
oveq12i |
⊢ ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) = ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) |
| 23 |
6
|
nn0rei |
⊢ 𝐹 ∈ ℝ |
| 24 |
5 23
|
decdiv10 |
⊢ ( ; 𝐸 𝐹 / ; 1 0 ) = ( 𝐸 . 𝐹 ) |
| 25 |
17 22 24
|
3eqtr3i |
⊢ ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) = ( 𝐸 . 𝐹 ) |