Step |
Hyp |
Ref |
Expression |
1 |
|
dpmul.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpmul.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
dpmul.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
dpmul.d |
⊢ 𝐷 ∈ ℕ0 |
5 |
|
dpmul.e |
⊢ 𝐸 ∈ ℕ0 |
6 |
|
dpadd.f |
⊢ 𝐹 ∈ ℕ0 |
7 |
|
dpadd.1 |
⊢ ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) = ; 𝐸 𝐹 |
8 |
1 2
|
deccl |
⊢ ; 𝐴 𝐵 ∈ ℕ0 |
9 |
8
|
nn0cni |
⊢ ; 𝐴 𝐵 ∈ ℂ |
10 |
3 4
|
deccl |
⊢ ; 𝐶 𝐷 ∈ ℕ0 |
11 |
10
|
nn0cni |
⊢ ; 𝐶 𝐷 ∈ ℂ |
12 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
13 |
12
|
nncni |
⊢ ; 1 0 ∈ ℂ |
14 |
12
|
nnne0i |
⊢ ; 1 0 ≠ 0 |
15 |
9 11 13 14
|
divdiri |
⊢ ( ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) / ; 1 0 ) = ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) |
16 |
7
|
oveq1i |
⊢ ( ( ; 𝐴 𝐵 + ; 𝐶 𝐷 ) / ; 1 0 ) = ( ; 𝐸 𝐹 / ; 1 0 ) |
17 |
15 16
|
eqtr3i |
⊢ ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) = ( ; 𝐸 𝐹 / ; 1 0 ) |
18 |
2
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
19 |
1 18
|
decdiv10 |
⊢ ( ; 𝐴 𝐵 / ; 1 0 ) = ( 𝐴 . 𝐵 ) |
20 |
4
|
nn0rei |
⊢ 𝐷 ∈ ℝ |
21 |
3 20
|
decdiv10 |
⊢ ( ; 𝐶 𝐷 / ; 1 0 ) = ( 𝐶 . 𝐷 ) |
22 |
19 21
|
oveq12i |
⊢ ( ( ; 𝐴 𝐵 / ; 1 0 ) + ( ; 𝐶 𝐷 / ; 1 0 ) ) = ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) |
23 |
6
|
nn0rei |
⊢ 𝐹 ∈ ℝ |
24 |
5 23
|
decdiv10 |
⊢ ( ; 𝐸 𝐹 / ; 1 0 ) = ( 𝐸 . 𝐹 ) |
25 |
17 22 24
|
3eqtr3i |
⊢ ( ( 𝐴 . 𝐵 ) + ( 𝐶 . 𝐷 ) ) = ( 𝐸 . 𝐹 ) |