Step |
Hyp |
Ref |
Expression |
1 |
|
dpmul.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpmul.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
dpmul.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
dpmul.d |
⊢ 𝐷 ∈ ℕ0 |
5 |
|
dpmul.e |
⊢ 𝐸 ∈ ℕ0 |
6 |
|
dpmul.g |
⊢ 𝐺 ∈ ℕ0 |
7 |
|
dpadd3.f |
⊢ 𝐹 ∈ ℕ0 |
8 |
|
dpadd3.h |
⊢ 𝐻 ∈ ℕ0 |
9 |
|
dpadd3.i |
⊢ 𝐼 ∈ ℕ0 |
10 |
|
dpadd3.1 |
⊢ ( ; ; 𝐴 𝐵 𝐶 + ; ; 𝐷 𝐸 𝐹 ) = ; ; 𝐺 𝐻 𝐼 |
11 |
2
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
12 |
3
|
nn0rei |
⊢ 𝐶 ∈ ℝ |
13 |
|
dp2cl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → _ 𝐵 𝐶 ∈ ℝ ) |
14 |
11 12 13
|
mp2an |
⊢ _ 𝐵 𝐶 ∈ ℝ |
15 |
|
dpcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ _ 𝐵 𝐶 ∈ ℝ ) → ( 𝐴 . _ 𝐵 𝐶 ) ∈ ℝ ) |
16 |
1 14 15
|
mp2an |
⊢ ( 𝐴 . _ 𝐵 𝐶 ) ∈ ℝ |
17 |
16
|
recni |
⊢ ( 𝐴 . _ 𝐵 𝐶 ) ∈ ℂ |
18 |
5
|
nn0rei |
⊢ 𝐸 ∈ ℝ |
19 |
7
|
nn0rei |
⊢ 𝐹 ∈ ℝ |
20 |
|
dp2cl |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → _ 𝐸 𝐹 ∈ ℝ ) |
21 |
18 19 20
|
mp2an |
⊢ _ 𝐸 𝐹 ∈ ℝ |
22 |
|
dpcl |
⊢ ( ( 𝐷 ∈ ℕ0 ∧ _ 𝐸 𝐹 ∈ ℝ ) → ( 𝐷 . _ 𝐸 𝐹 ) ∈ ℝ ) |
23 |
4 21 22
|
mp2an |
⊢ ( 𝐷 . _ 𝐸 𝐹 ) ∈ ℝ |
24 |
23
|
recni |
⊢ ( 𝐷 . _ 𝐸 𝐹 ) ∈ ℂ |
25 |
17 24
|
addcli |
⊢ ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) ∈ ℂ |
26 |
8
|
nn0rei |
⊢ 𝐻 ∈ ℝ |
27 |
9
|
nn0rei |
⊢ 𝐼 ∈ ℝ |
28 |
|
dp2cl |
⊢ ( ( 𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ ) → _ 𝐻 𝐼 ∈ ℝ ) |
29 |
26 27 28
|
mp2an |
⊢ _ 𝐻 𝐼 ∈ ℝ |
30 |
|
dpcl |
⊢ ( ( 𝐺 ∈ ℕ0 ∧ _ 𝐻 𝐼 ∈ ℝ ) → ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℝ ) |
31 |
6 29 30
|
mp2an |
⊢ ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℝ |
32 |
31
|
recni |
⊢ ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℂ |
33 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
34 |
33
|
decnncl2 |
⊢ ; ; 1 0 0 ∈ ℕ |
35 |
34
|
nncni |
⊢ ; ; 1 0 0 ∈ ℂ |
36 |
34
|
nnne0i |
⊢ ; ; 1 0 0 ≠ 0 |
37 |
35 36
|
pm3.2i |
⊢ ( ; ; 1 0 0 ∈ ℂ ∧ ; ; 1 0 0 ≠ 0 ) |
38 |
25 32 37
|
3pm3.2i |
⊢ ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℂ ∧ ( ; ; 1 0 0 ∈ ℂ ∧ ; ; 1 0 0 ≠ 0 ) ) |
39 |
17 24 35
|
adddiri |
⊢ ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) · ; ; 1 0 0 ) = ( ( ( 𝐴 . _ 𝐵 𝐶 ) · ; ; 1 0 0 ) + ( ( 𝐷 . _ 𝐸 𝐹 ) · ; ; 1 0 0 ) ) |
40 |
1 2 12
|
dpmul100 |
⊢ ( ( 𝐴 . _ 𝐵 𝐶 ) · ; ; 1 0 0 ) = ; ; 𝐴 𝐵 𝐶 |
41 |
4 5 19
|
dpmul100 |
⊢ ( ( 𝐷 . _ 𝐸 𝐹 ) · ; ; 1 0 0 ) = ; ; 𝐷 𝐸 𝐹 |
42 |
40 41
|
oveq12i |
⊢ ( ( ( 𝐴 . _ 𝐵 𝐶 ) · ; ; 1 0 0 ) + ( ( 𝐷 . _ 𝐸 𝐹 ) · ; ; 1 0 0 ) ) = ( ; ; 𝐴 𝐵 𝐶 + ; ; 𝐷 𝐸 𝐹 ) |
43 |
6 8 27
|
dpmul100 |
⊢ ( ( 𝐺 . _ 𝐻 𝐼 ) · ; ; 1 0 0 ) = ; ; 𝐺 𝐻 𝐼 |
44 |
10 42 43
|
3eqtr4i |
⊢ ( ( ( 𝐴 . _ 𝐵 𝐶 ) · ; ; 1 0 0 ) + ( ( 𝐷 . _ 𝐸 𝐹 ) · ; ; 1 0 0 ) ) = ( ( 𝐺 . _ 𝐻 𝐼 ) · ; ; 1 0 0 ) |
45 |
39 44
|
eqtri |
⊢ ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) · ; ; 1 0 0 ) = ( ( 𝐺 . _ 𝐻 𝐼 ) · ; ; 1 0 0 ) |
46 |
|
mulcan2 |
⊢ ( ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℂ ∧ ( ; ; 1 0 0 ∈ ℂ ∧ ; ; 1 0 0 ≠ 0 ) ) → ( ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) · ; ; 1 0 0 ) = ( ( 𝐺 . _ 𝐻 𝐼 ) · ; ; 1 0 0 ) ↔ ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) = ( 𝐺 . _ 𝐻 𝐼 ) ) ) |
47 |
46
|
biimpa |
⊢ ( ( ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . _ 𝐻 𝐼 ) ∈ ℂ ∧ ( ; ; 1 0 0 ∈ ℂ ∧ ; ; 1 0 0 ≠ 0 ) ) ∧ ( ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) · ; ; 1 0 0 ) = ( ( 𝐺 . _ 𝐻 𝐼 ) · ; ; 1 0 0 ) ) → ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) = ( 𝐺 . _ 𝐻 𝐼 ) ) |
48 |
38 45 47
|
mp2an |
⊢ ( ( 𝐴 . _ 𝐵 𝐶 ) + ( 𝐷 . _ 𝐸 𝐹 ) ) = ( 𝐺 . _ 𝐻 𝐼 ) |