Metamath Proof Explorer


Theorem dpexpp1

Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpexpp1.a 𝐴 ∈ ℕ0
dpexpp1.b 𝐵 ∈ ℝ+
dpexpp1.1 ( 𝑃 + 1 ) = 𝑄
dpexpp1.p 𝑃 ∈ ℤ
dpexpp1.q 𝑄 ∈ ℤ
Assertion dpexpp1 ( ( 𝐴 . 𝐵 ) · ( 1 0 ↑ 𝑃 ) ) = ( ( 0 . 𝐴 𝐵 ) · ( 1 0 ↑ 𝑄 ) )

Proof

Step Hyp Ref Expression
1 dpexpp1.a 𝐴 ∈ ℕ0
2 dpexpp1.b 𝐵 ∈ ℝ+
3 dpexpp1.1 ( 𝑃 + 1 ) = 𝑄
4 dpexpp1.p 𝑃 ∈ ℤ
5 dpexpp1.q 𝑄 ∈ ℤ
6 0re 0 ∈ ℝ
7 10pos 0 < 1 0
8 6 7 gtneii 1 0 ≠ 0
9 1 2 rpdp2cl 𝐴 𝐵 ∈ ℝ+
10 rpre ( 𝐴 𝐵 ∈ ℝ+ 𝐴 𝐵 ∈ ℝ )
11 9 10 ax-mp 𝐴 𝐵 ∈ ℝ
12 11 recni 𝐴 𝐵 ∈ ℂ
13 10re 1 0 ∈ ℝ
14 13 7 pm3.2i ( 1 0 ∈ ℝ ∧ 0 < 1 0 )
15 elrp ( 1 0 ∈ ℝ+ ↔ ( 1 0 ∈ ℝ ∧ 0 < 1 0 ) )
16 14 15 mpbir 1 0 ∈ ℝ+
17 rpexpcl ( ( 1 0 ∈ ℝ+𝑃 ∈ ℤ ) → ( 1 0 ↑ 𝑃 ) ∈ ℝ+ )
18 16 4 17 mp2an ( 1 0 ↑ 𝑃 ) ∈ ℝ+
19 rpcn ( ( 1 0 ↑ 𝑃 ) ∈ ℝ+ → ( 1 0 ↑ 𝑃 ) ∈ ℂ )
20 18 19 ax-mp ( 1 0 ↑ 𝑃 ) ∈ ℂ
21 12 20 mulcli ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) ∈ ℂ
22 10nn0 1 0 ∈ ℕ0
23 22 nn0cni 1 0 ∈ ℂ
24 21 23 divcan1zi ( 1 0 ≠ 0 → ( ( ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) / 1 0 ) · 1 0 ) = ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) )
25 8 24 ax-mp ( ( ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) / 1 0 ) · 1 0 ) = ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) )
26 23 8 pm3.2i ( 1 0 ∈ ℂ ∧ 1 0 ≠ 0 )
27 div23 ( ( 𝐴 𝐵 ∈ ℂ ∧ ( 1 0 ↑ 𝑃 ) ∈ ℂ ∧ ( 1 0 ∈ ℂ ∧ 1 0 ≠ 0 ) ) → ( ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) / 1 0 ) = ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑃 ) ) )
28 12 20 26 27 mp3an ( ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) / 1 0 ) = ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑃 ) )
29 28 oveq1i ( ( ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) / 1 0 ) · 1 0 ) = ( ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑃 ) ) · 1 0 )
30 25 29 eqtr3i ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) = ( ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑃 ) ) · 1 0 )
31 12 23 8 divcli ( 𝐴 𝐵 / 1 0 ) ∈ ℂ
32 31 20 23 mulassi ( ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑃 ) ) · 1 0 ) = ( ( 𝐴 𝐵 / 1 0 ) · ( ( 1 0 ↑ 𝑃 ) · 1 0 ) )
33 expp1z ( ( 1 0 ∈ ℂ ∧ 1 0 ≠ 0 ∧ 𝑃 ∈ ℤ ) → ( 1 0 ↑ ( 𝑃 + 1 ) ) = ( ( 1 0 ↑ 𝑃 ) · 1 0 ) )
34 23 8 4 33 mp3an ( 1 0 ↑ ( 𝑃 + 1 ) ) = ( ( 1 0 ↑ 𝑃 ) · 1 0 )
35 3 oveq2i ( 1 0 ↑ ( 𝑃 + 1 ) ) = ( 1 0 ↑ 𝑄 )
36 34 35 eqtr3i ( ( 1 0 ↑ 𝑃 ) · 1 0 ) = ( 1 0 ↑ 𝑄 )
37 36 oveq2i ( ( 𝐴 𝐵 / 1 0 ) · ( ( 1 0 ↑ 𝑃 ) · 1 0 ) ) = ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑄 ) )
38 30 32 37 3eqtri ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) ) = ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑄 ) )
39 1 2 dpval3rp ( 𝐴 . 𝐵 ) = 𝐴 𝐵
40 39 oveq1i ( ( 𝐴 . 𝐵 ) · ( 1 0 ↑ 𝑃 ) ) = ( 𝐴 𝐵 · ( 1 0 ↑ 𝑃 ) )
41 0nn0 0 ∈ ℕ0
42 41 9 dpval3rp ( 0 . 𝐴 𝐵 ) = 0 𝐴 𝐵
43 9 dp20h 0 𝐴 𝐵 = ( 𝐴 𝐵 / 1 0 )
44 42 43 eqtri ( 0 . 𝐴 𝐵 ) = ( 𝐴 𝐵 / 1 0 )
45 44 oveq1i ( ( 0 . 𝐴 𝐵 ) · ( 1 0 ↑ 𝑄 ) ) = ( ( 𝐴 𝐵 / 1 0 ) · ( 1 0 ↑ 𝑄 ) )
46 38 40 45 3eqtr4i ( ( 𝐴 . 𝐵 ) · ( 1 0 ↑ 𝑃 ) ) = ( ( 0 . 𝐴 𝐵 ) · ( 1 0 ↑ 𝑄 ) )