Metamath Proof Explorer


Theorem dpgti

Description: Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpgti.a 𝐴 ∈ ℕ0
dpgti.b 𝐵 ∈ ℝ+
Assertion dpgti 𝐴 < ( 𝐴 . 𝐵 )

Proof

Step Hyp Ref Expression
1 dpgti.a 𝐴 ∈ ℕ0
2 dpgti.b 𝐵 ∈ ℝ+
3 1 nn0rei 𝐴 ∈ ℝ
4 10re 1 0 ∈ ℝ
5 10pos 0 < 1 0
6 4 5 pm3.2i ( 1 0 ∈ ℝ ∧ 0 < 1 0 )
7 elrp ( 1 0 ∈ ℝ+ ↔ ( 1 0 ∈ ℝ ∧ 0 < 1 0 ) )
8 6 7 mpbir 1 0 ∈ ℝ+
9 rpdivcl ( ( 𝐵 ∈ ℝ+ 1 0 ∈ ℝ+ ) → ( 𝐵 / 1 0 ) ∈ ℝ+ )
10 2 8 9 mp2an ( 𝐵 / 1 0 ) ∈ ℝ+
11 ltaddrp ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / 1 0 ) ∈ ℝ+ ) → 𝐴 < ( 𝐴 + ( 𝐵 / 1 0 ) ) )
12 3 10 11 mp2an 𝐴 < ( 𝐴 + ( 𝐵 / 1 0 ) )
13 rpre ( 𝐵 ∈ ℝ+𝐵 ∈ ℝ )
14 2 13 ax-mp 𝐵 ∈ ℝ
15 1 14 dpval2 ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / 1 0 ) )
16 12 15 breqtrri 𝐴 < ( 𝐴 . 𝐵 )