Step |
Hyp |
Ref |
Expression |
1 |
|
dpgti.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpgti.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
4 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
5 |
|
10pos |
⊢ 0 < ; 1 0 |
6 |
4 5
|
pm3.2i |
⊢ ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) |
7 |
|
elrp |
⊢ ( ; 1 0 ∈ ℝ+ ↔ ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) ) |
8 |
6 7
|
mpbir |
⊢ ; 1 0 ∈ ℝ+ |
9 |
|
rpdivcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ ; 1 0 ∈ ℝ+ ) → ( 𝐵 / ; 1 0 ) ∈ ℝ+ ) |
10 |
2 8 9
|
mp2an |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℝ+ |
11 |
|
ltaddrp |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / ; 1 0 ) ∈ ℝ+ ) → 𝐴 < ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ) |
12 |
3 10 11
|
mp2an |
⊢ 𝐴 < ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
13 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
14 |
2 13
|
ax-mp |
⊢ 𝐵 ∈ ℝ |
15 |
1 14
|
dpval2 |
⊢ ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
16 |
12 15
|
breqtrri |
⊢ 𝐴 < ( 𝐴 . 𝐵 ) |