| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjlem.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjcntz.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							dpjlem | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  =  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							disjdif | 
							⊢ ( { 𝑋 }  ∩  ( 𝐼  ∖  { 𝑋 } ) )  =  ∅  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( { 𝑋 }  ∩  ( 𝐼  ∖  { 𝑋 } ) )  =  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							undif2 | 
							⊢ ( { 𝑋 }  ∪  ( 𝐼  ∖  { 𝑋 } ) )  =  ( { 𝑋 }  ∪  𝐼 )  | 
						
						
							| 10 | 
							
								3
							 | 
							snssd | 
							⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝐼 )  | 
						
						
							| 11 | 
							
								
							 | 
							ssequn1 | 
							⊢ ( { 𝑋 }  ⊆  𝐼  ↔  ( { 𝑋 }  ∪  𝐼 )  =  𝐼 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( { 𝑋 }  ∪  𝐼 )  =  𝐼 )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtr2id | 
							⊢ ( 𝜑  →  𝐼  =  ( { 𝑋 }  ∪  ( 𝐼  ∖  { 𝑋 } ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 15 | 
							
								6 8 13 4 14
							 | 
							dmdprdsplit | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  ↔  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  { 𝑋 } )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  { 𝑋 } )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simp2d | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  { 𝑋 } ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) ) )  | 
						
						
							| 18 | 
							
								5 17
							 | 
							eqsstrrd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑋 } ) ) ) ) )  |