| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							⊢ 𝑃  =  ( 𝐺 dProj 𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjfval.q | 
							⊢ 𝑄  =  ( proj1 ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							df-dpj | 
							⊢ dProj  =  ( 𝑔  ∈  Grp ,  𝑠  ∈  ( dom   DProd   “  { 𝑔 } )  ↦  ( 𝑖  ∈  dom  𝑠  ↦  ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔  DProd  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) ) ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  dProj  =  ( 𝑔  ∈  Grp ,  𝑠  ∈  ( dom   DProd   “  { 𝑔 } )  ↦  ( 𝑖  ∈  dom  𝑠  ↦  ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔  DProd  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) ) ) ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  𝑠  =  𝑆 )  | 
						
						
							| 8 | 
							
								7
							 | 
							dmeqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  dom  𝑠  =  dom  𝑆 )  | 
						
						
							| 9 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  dom  𝑠  =  𝐼 )  | 
						
						
							| 11 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  𝑔  =  𝐺 )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( proj1 ‘ 𝑔 )  =  ( proj1 ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								12 4
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( proj1 ‘ 𝑔 )  =  𝑄 )  | 
						
						
							| 14 | 
							
								7
							 | 
							fveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( 𝑠 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) )  | 
						
						
							| 15 | 
							
								10
							 | 
							difeq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( dom  𝑠  ∖  { 𝑖 } )  =  ( 𝐼  ∖  { 𝑖 } ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							reseq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) )  =  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( 𝑔  DProd  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) ) )  =  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) )  | 
						
						
							| 18 | 
							
								13 14 17
							 | 
							oveq123d | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔  DProd  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) ) ) )  =  ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							mpteq12dv | 
							⊢ ( ( 𝜑  ∧  ( 𝑔  =  𝐺  ∧  𝑠  =  𝑆 ) )  →  ( 𝑖  ∈  dom  𝑠  ↦  ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔  DProd  ( 𝑠  ↾  ( dom  𝑠  ∖  { 𝑖 } ) ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑔  =  𝐺 )  →  𝑔  =  𝐺 )  | 
						
						
							| 21 | 
							
								20
							 | 
							sneqd | 
							⊢ ( ( 𝜑  ∧  𝑔  =  𝐺 )  →  { 𝑔 }  =  { 𝐺 } )  | 
						
						
							| 22 | 
							
								21
							 | 
							imaeq2d | 
							⊢ ( ( 𝜑  ∧  𝑔  =  𝐺 )  →  ( dom   DProd   “  { 𝑔 } )  =  ( dom   DProd   “  { 𝐺 } ) )  | 
						
						
							| 23 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 24 | 
							
								1 23
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 25 | 
							
								
							 | 
							reldmdprd | 
							⊢ Rel  dom   DProd   | 
						
						
							| 26 | 
							
								
							 | 
							elrelimasn | 
							⊢ ( Rel  dom   DProd   →  ( 𝑆  ∈  ( dom   DProd   “  { 𝐺 } )  ↔  𝐺 dom   DProd  𝑆 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							ax-mp | 
							⊢ ( 𝑆  ∈  ( dom   DProd   “  { 𝐺 } )  ↔  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 28 | 
							
								1 27
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝑆  ∈  ( dom   DProd   “  { 𝐺 } ) )  | 
						
						
							| 29 | 
							
								1 2
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 30 | 
							
								29
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) ) )  ∈  V )  | 
						
						
							| 31 | 
							
								6 19 22 24 28 30
							 | 
							ovmpodx | 
							⊢ ( 𝜑  →  ( 𝐺 dProj 𝑆 )  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) ) ) )  | 
						
						
							| 32 | 
							
								3 31
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝑃  =  ( 𝑖  ∈  𝐼  ↦  ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑖 } ) ) ) ) ) )  |