Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjfval.q |
⊢ 𝑄 = ( proj1 ‘ 𝐺 ) |
5 |
|
df-dpj |
⊢ dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) ) |
7 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → 𝑠 = 𝑆 ) |
8 |
7
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → dom 𝑠 = dom 𝑆 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → dom 𝑆 = 𝐼 ) |
10 |
8 9
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → dom 𝑠 = 𝐼 ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → 𝑔 = 𝐺 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( proj1 ‘ 𝑔 ) = ( proj1 ‘ 𝐺 ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( proj1 ‘ 𝑔 ) = 𝑄 ) |
14 |
7
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( 𝑠 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) |
15 |
10
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( dom 𝑠 ∖ { 𝑖 } ) = ( 𝐼 ∖ { 𝑖 } ) ) |
16 |
7 15
|
reseq12d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) = ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) |
17 |
11 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) = ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) |
18 |
13 14 17
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) = ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) |
19 |
10 18
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠 ‘ 𝑖 ) ( proj1 ‘ 𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
21 |
20
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → { 𝑔 } = { 𝐺 } ) |
22 |
21
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( dom DProd “ { 𝑔 } ) = ( dom DProd “ { 𝐺 } ) ) |
23 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
25 |
|
reldmdprd |
⊢ Rel dom DProd |
26 |
|
elrelimasn |
⊢ ( Rel dom DProd → ( 𝑆 ∈ ( dom DProd “ { 𝐺 } ) ↔ 𝐺 dom DProd 𝑆 ) ) |
27 |
25 26
|
ax-mp |
⊢ ( 𝑆 ∈ ( dom DProd “ { 𝐺 } ) ↔ 𝐺 dom DProd 𝑆 ) |
28 |
1 27
|
sylibr |
⊢ ( 𝜑 → 𝑆 ∈ ( dom DProd “ { 𝐺 } ) ) |
29 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
30 |
29
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) ∈ V ) |
31 |
6 19 22 24 28 30
|
ovmpodx |
⊢ ( 𝜑 → ( 𝐺 dProj 𝑆 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) ) |
32 |
3 31
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑆 ‘ 𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) ) |