| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							⊢ 𝑃  =  ( 𝐺 dProj 𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjlid.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							dpjghm | 
							⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  𝐺 ) )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								6 4
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								1 2 3 4
							 | 
							dpjf | 
							⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑋 ) : ( 𝐺  DProd  𝑆 ) ⟶ ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  ( 𝑃 ‘ 𝑋 )  ⊆  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  ( 𝑆 ‘ 𝑋 ) )  =  ( 𝐺  ↾s  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							resghm2b | 
							⊢ ( ( ( 𝑆 ‘ 𝑋 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ran  ( 𝑃 ‘ 𝑋 )  ⊆  ( 𝑆 ‘ 𝑋 ) )  →  ( ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  𝐺 )  ↔  ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  ( 𝐺  ↾s  ( 𝑆 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 12 | 
							
								7 9 11
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  𝐺 )  ↔  ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  ( 𝐺  ↾s  ( 𝑆 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑋 )  ∈  ( ( 𝐺  ↾s  ( 𝐺  DProd  𝑆 ) )  GrpHom  ( 𝐺  ↾s  ( 𝑆 ‘ 𝑋 ) ) ) )  |