Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjid.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
7 |
1 2 3 4 5 6
|
dpjidcl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) ) |
8 |
7
|
simprd |
⊢ ( 𝜑 → 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |