Metamath Proof Explorer


Theorem dpjid

Description: The key property of projections: the sum of all the projections of A is A . (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
dpjid.3 ( 𝜑𝐴 ∈ ( 𝐺 DProd 𝑆 ) )
Assertion dpjid ( 𝜑𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
4 dpjid.3 ( 𝜑𝐴 ∈ ( 𝐺 DProd 𝑆 ) )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 eqid { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) }
7 1 2 3 4 5 6 dpjidcl ( 𝜑 → ( ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ∧ 𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) ) )
8 7 simprd ( 𝜑𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ ( ( 𝑃𝑥 ) ‘ 𝐴 ) ) ) )