| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							⊢ 𝑃  =  ( 𝐺 dProj 𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjidcl.3 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dpjidcl.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							dpjidcl.w | 
							⊢ 𝑊  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eldprd | 
							⊢ ( dom  𝑆  =  𝐼  →  ( 𝐴  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  𝑊 𝐴  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  𝑊 𝐴  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  𝑊 𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝑊 𝐴  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 12 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 13 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 14 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 16 | 
							
								13 14 3 15
							 | 
							dpjf | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑃 ‘ 𝑥 ) : ( 𝐺  DProd  𝑆 ) ⟶ ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 17 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐴  ∈  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  ∈  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 20 | 
							
								19
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  V )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  V )  | 
						
						
							| 22 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  Fun  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  ∈  𝑊 )  | 
						
						
							| 25 | 
							
								6 11 12 24
							 | 
							dprdffsupp | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  finSupp   0  )  | 
						
						
							| 26 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( proj1 ‘ 𝐺 )  =  ( proj1 ‘ 𝐺 )  | 
						
						
							| 28 | 
							
								13 14 3 27 15
							 | 
							dpjval | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑃 ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							fveq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 ) )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝐴  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 34 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 35 | 
							
								
							 | 
							grpmnd | 
							⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd )  | 
						
						
							| 36 | 
							
								11 34 35
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐺  ∈  Mnd )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝐺  ∈  Mnd )  | 
						
						
							| 38 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝐼  ∈  V )  | 
						
						
							| 39 | 
							
								6 11 12 24 32
							 | 
							dprdff | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  | 
						
						
							| 41 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑓  ∈  𝑊 )  | 
						
						
							| 42 | 
							
								6 13 14 41 33
							 | 
							dprdfcntz | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ran  𝑓  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  𝑓 ) )  | 
						
						
							| 43 | 
							
								26 42
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ran  𝑓  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  𝑓 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  →  { 𝑥 }  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  { 𝑥 }  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							difss2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  { 𝑥 }  ⊆  𝐼 )  | 
						
						
							| 47 | 
							
								
							 | 
							suppssdm | 
							⊢ ( 𝑓  supp   0  )  ⊆  dom  𝑓  | 
						
						
							| 48 | 
							
								47 39
							 | 
							fssdm | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑓  supp   0  )  ⊆  𝐼 )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓  supp   0  )  ⊆  𝐼 )  | 
						
						
							| 50 | 
							
								
							 | 
							ssconb | 
							⊢ ( ( { 𝑥 }  ⊆  𝐼  ∧  ( 𝑓  supp   0  )  ⊆  𝐼 )  →  ( { 𝑥 }  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  ↔  ( 𝑓  supp   0  )  ⊆  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 51 | 
							
								46 49 50
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( { 𝑥 }  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  ↔  ( 𝑓  supp   0  )  ⊆  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 52 | 
							
								45 51
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓  supp   0  )  ⊆  ( 𝐼  ∖  { 𝑥 } ) )  | 
						
						
							| 53 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝑓  finSupp   0  )  | 
						
						
							| 54 | 
							
								32 5 33 37 38 40 43 52 53
							 | 
							gsumzres | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 55 | 
							
								31 54
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝐴  =  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  X 𝑖  ∈  ( 𝐼  ∖  { 𝑥 } ) ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  =  { ℎ  ∈  X 𝑖  ∈  ( 𝐼  ∖  { 𝑥 } ) ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  | 
						
						
							| 57 | 
							
								
							 | 
							difss | 
							⊢ ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼  | 
						
						
							| 58 | 
							
								57
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼 )  | 
						
						
							| 59 | 
							
								13 14 58
							 | 
							dprdres | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							simpld | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 61 | 
							
								13 14
							 | 
							dprdf2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fssres | 
							⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  ∧  ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼 )  →  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) : ( 𝐼  ∖  { 𝑥 } ) ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 63 | 
							
								61 57 62
							 | 
							sylancl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) : ( 𝐼  ∖  { 𝑥 } ) ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							fdmd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  dom  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) )  =  ( 𝐼  ∖  { 𝑥 } ) )  | 
						
						
							| 65 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							feqmptd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑓  =  ( 𝑘  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑘 ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							reseq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) )  =  ( ( 𝑘  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑘 ) )  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							resmpt | 
							⊢ ( ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼  →  ( ( 𝑘  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑘 ) )  ↾  ( 𝐼  ∖  { 𝑥 } ) )  =  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) ) )  | 
						
						
							| 69 | 
							
								57 68
							 | 
							ax-mp | 
							⊢ ( ( 𝑘  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑘 ) )  ↾  ( 𝐼  ∖  { 𝑥 } ) )  =  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) )  =  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  →  𝑘  ∈  𝐼 )  | 
						
						
							| 72 | 
							
								6 13 14 41
							 | 
							dprdfcl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							sylan2 | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  →  ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑘 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) )  →  ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑘 ) )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑘 ) )  | 
						
						
							| 77 | 
							
								19
							 | 
							difexd | 
							⊢ ( 𝜑  →  ( 𝐼  ∖  { 𝑥 } )  ∈  V )  | 
						
						
							| 78 | 
							
								77
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  V )  | 
						
						
							| 79 | 
							
								78
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  V )  | 
						
						
							| 80 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  Fun  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) ) )  | 
						
						
							| 82 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑓  finSupp   0  )  | 
						
						
							| 83 | 
							
								
							 | 
							ssdif | 
							⊢ ( ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼  →  ( ( 𝐼  ∖  { 𝑥 } )  ∖  ( 𝑓  supp   0  ) )  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  | 
						
						
							| 84 | 
							
								57 83
							 | 
							ax-mp | 
							⊢ ( ( 𝐼  ∖  { 𝑥 } )  ∖  ( 𝑓  supp   0  ) )  ⊆  ( 𝐼  ∖  ( 𝑓  supp   0  ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							sseli | 
							⊢ ( 𝑘  ∈  ( ( 𝐼  ∖  { 𝑥 } )  ∖  ( 𝑓  supp   0  ) )  →  𝑘  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ssidd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓  supp   0  )  ⊆  ( 𝑓  supp   0  ) )  | 
						
						
							| 87 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  V )  | 
						
						
							| 88 | 
							
								5
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 89 | 
							
								88
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →   0   ∈  V )  | 
						
						
							| 90 | 
							
								65 86 87 89
							 | 
							suppssr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓 ‘ 𝑘 )  =   0  )  | 
						
						
							| 91 | 
							
								85 90
							 | 
							sylan2 | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝑘  ∈  ( ( 𝐼  ∖  { 𝑥 } )  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝑓 ‘ 𝑘 )  =   0  )  | 
						
						
							| 92 | 
							
								77
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐼  ∖  { 𝑥 } )  ∈  V )  | 
						
						
							| 93 | 
							
								91 92
							 | 
							suppss2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) )  | 
						
						
							| 94 | 
							
								
							 | 
							fsuppsssupp | 
							⊢ ( ( ( ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) ) )  ∧  ( 𝑓  finSupp   0   ∧  ( ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) ) )  →  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  finSupp   0  )  | 
						
						
							| 95 | 
							
								79 81 82 93 94
							 | 
							syl22anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  finSupp   0  )  | 
						
						
							| 96 | 
							
								56 60 64 76 95
							 | 
							dprdwd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  { ℎ  ∈  X 𝑖  ∈  ( 𝐼  ∖  { 𝑥 } ) ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } )  | 
						
						
							| 97 | 
							
								70 96
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) )  ∈  { ℎ  ∈  X 𝑖  ∈  ( 𝐼  ∖  { 𝑥 } ) ( ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ‘ 𝑖 )  ∣  ℎ  finSupp   0  } )  | 
						
						
							| 98 | 
							
								5 56 60 64 97
							 | 
							eldprdi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  ∈  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 99 | 
							
								26 98
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  ∈  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 100 | 
							
								55 99
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  𝐴  ∈  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 102 | 
							
								
							 | 
							eqid | 
							⊢ ( LSSum ‘ 𝐺 )  =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 103 | 
							
								61 15
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 104 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 105 | 
							
								60 104
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 106 | 
							
								13 14 15 5
							 | 
							dpjdisj | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  =  {  0  } )  | 
						
						
							| 107 | 
							
								13 14 15 33
							 | 
							dpjcntz | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 108 | 
							
								101 102 5 33 103 105 106 107 27
							 | 
							pj1rid | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  ∧  𝐴  ∈  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  →  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =   0  )  | 
						
						
							| 109 | 
							
								26 108
							 | 
							sylanl2 | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  ∧  𝐴  ∈  ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  →  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =   0  )  | 
						
						
							| 110 | 
							
								100 109
							 | 
							mpdan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =   0  )  | 
						
						
							| 111 | 
							
								30 110
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝑓  supp   0  ) ) )  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =   0  )  | 
						
						
							| 112 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐼  ∈  V )  | 
						
						
							| 113 | 
							
								111 112
							 | 
							suppss2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) )  | 
						
						
							| 114 | 
							
								
							 | 
							fsuppsssupp | 
							⊢ ( ( ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) )  ∧  ( 𝑓  finSupp   0   ∧  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  supp   0  )  ⊆  ( 𝑓  supp   0  ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  finSupp   0  )  | 
						
						
							| 115 | 
							
								21 23 25 113 114
							 | 
							syl22anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  finSupp   0  )  | 
						
						
							| 116 | 
							
								6 11 12 18 115
							 | 
							dprdwd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  𝑊 )  | 
						
						
							| 117 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐴  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 118 | 
							
								39
							 | 
							feqmptd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑥 ) ) )  | 
						
						
							| 119 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐴  =  ( 𝐺  Σg  𝑓 ) )  | 
						
						
							| 120 | 
							
								13 34 35
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐺  ∈  Mnd )  | 
						
						
							| 121 | 
							
								6 13 14 41
							 | 
							dprdffsupp | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝑓  finSupp   0  )  | 
						
						
							| 122 | 
							
								
							 | 
							disjdif | 
							⊢ ( { 𝑥 }  ∩  ( 𝐼  ∖  { 𝑥 } ) )  =  ∅  | 
						
						
							| 123 | 
							
								122
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( { 𝑥 }  ∩  ( 𝐼  ∖  { 𝑥 } ) )  =  ∅ )  | 
						
						
							| 124 | 
							
								
							 | 
							undif2 | 
							⊢ ( { 𝑥 }  ∪  ( 𝐼  ∖  { 𝑥 } ) )  =  ( { 𝑥 }  ∪  𝐼 )  | 
						
						
							| 125 | 
							
								15
							 | 
							snssd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  { 𝑥 }  ⊆  𝐼 )  | 
						
						
							| 126 | 
							
								
							 | 
							ssequn1 | 
							⊢ ( { 𝑥 }  ⊆  𝐼  ↔  ( { 𝑥 }  ∪  𝐼 )  =  𝐼 )  | 
						
						
							| 127 | 
							
								125 126
							 | 
							sylib | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( { 𝑥 }  ∪  𝐼 )  =  𝐼 )  | 
						
						
							| 128 | 
							
								124 127
							 | 
							eqtr2id | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐼  =  ( { 𝑥 }  ∪  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 129 | 
							
								32 5 101 33 120 87 65 42 121 123 128
							 | 
							gsumzsplit | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  Σg  𝑓 )  =  ( ( 𝐺  Σg  ( 𝑓  ↾  { 𝑥 } ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 130 | 
							
								65 125
							 | 
							feqresmpt | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓  ↾  { 𝑥 } )  =  ( 𝑘  ∈  { 𝑥 }  ↦  ( 𝑓 ‘ 𝑘 ) ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							oveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  Σg  ( 𝑓  ↾  { 𝑥 } ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥 }  ↦  ( 𝑓 ‘ 𝑘 ) ) ) )  | 
						
						
							| 132 | 
							
								65 15
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 133 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 134 | 
							
								32 133
							 | 
							gsumsn | 
							⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐼  ∧  ( 𝑓 ‘ 𝑥 )  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥 }  ↦  ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 135 | 
							
								120 15 132 134
							 | 
							syl3anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥 }  ↦  ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 136 | 
							
								131 135
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  Σg  ( 𝑓  ↾  { 𝑥 } ) )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							oveq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐺  Σg  ( 𝑓  ↾  { 𝑥 } ) ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 138 | 
							
								119 129 137
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐴  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 139 | 
							
								13 14 15 102
							 | 
							dpjlsm | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  DProd  𝑆 )  =  ( ( 𝑆 ‘ 𝑥 ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 140 | 
							
								17 139
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  𝐴  ∈  ( ( 𝑆 ‘ 𝑥 ) ( LSSum ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 141 | 
							
								6 11 12 24
							 | 
							dprdfcl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 142 | 
							
								101 102 5 33 103 105 106 107 27 140 141 98
							 | 
							pj1eq | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝐴  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) )  ↔  ( ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =  ( 𝑓 ‘ 𝑥 )  ∧  ( ( ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ( proj1 ‘ 𝐺 ) ( 𝑆 ‘ 𝑥 ) ) ‘ 𝐴 )  =  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ) )  | 
						
						
							| 143 | 
							
								138 142
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =  ( 𝑓 ‘ 𝑥 )  ∧  ( ( ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ( proj1 ‘ 𝐺 ) ( 𝑆 ‘ 𝑥 ) ) ‘ 𝐴 )  =  ( 𝐺  Σg  ( 𝑓  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							simpld | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺  DProd  ( 𝑆  ↾  ( 𝐼  ∖  { 𝑥 } ) ) ) ) ‘ 𝐴 )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 145 | 
							
								29 144
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑓 ‘ 𝑥 ) ) )  | 
						
						
							| 147 | 
							
								118 146
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝑓  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( 𝐺  Σg  𝑓 )  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) )  | 
						
						
							| 149 | 
							
								117 148
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  𝐴  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) )  | 
						
						
							| 150 | 
							
								116 149
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  𝑓 ) ) )  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 151 | 
							
								10 150
							 | 
							rexlimddv | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) )  ∈  𝑊  ∧  𝐴  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) )  |