Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjidcl.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) |
5 |
|
dpjidcl.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
6 |
|
dpjidcl.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
7 |
5 6
|
eldprd |
⊢ ( dom 𝑆 = 𝐼 → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑊 𝐴 = ( 𝐺 Σg 𝑓 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝐺 dom DProd 𝑆 ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → dom 𝑆 = 𝐼 ) |
13 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd 𝑆 ) |
14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → dom 𝑆 = 𝐼 ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
16 |
13 14 3 15
|
dpjf |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑥 ) : ( 𝐺 DProd 𝑆 ) ⟶ ( 𝑆 ‘ 𝑥 ) ) |
17 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) |
18 |
16 17
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
19 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
20 |
19
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ V ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ V ) |
22 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 ∈ 𝑊 ) |
25 |
6 11 12 24
|
dprdffsupp |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 finSupp 0 ) |
26 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) → 𝑥 ∈ 𝐼 ) |
27 |
|
eqid |
⊢ ( proj1 ‘ 𝐺 ) = ( proj1 ‘ 𝐺 ) |
28 |
13 14 3 27 15
|
dpjval |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
29 |
28
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) ) |
30 |
26 29
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) ) |
31 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝐴 = ( 𝐺 Σg 𝑓 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
33 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
34 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
35 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
36 |
11 34 35
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝐺 ∈ Mnd ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
38 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝐼 ∈ V ) |
39 |
6 11 12 24 32
|
dprdff |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
41 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑓 ∈ 𝑊 ) |
42 |
6 13 14 41 33
|
dprdfcntz |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
43 |
26 42
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
44 |
|
snssi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) → { 𝑥 } ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → { 𝑥 } ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) |
46 |
45
|
difss2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → { 𝑥 } ⊆ 𝐼 ) |
47 |
|
suppssdm |
⊢ ( 𝑓 supp 0 ) ⊆ dom 𝑓 |
48 |
47 39
|
fssdm |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑓 supp 0 ) ⊆ 𝐼 ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 supp 0 ) ⊆ 𝐼 ) |
50 |
|
ssconb |
⊢ ( ( { 𝑥 } ⊆ 𝐼 ∧ ( 𝑓 supp 0 ) ⊆ 𝐼 ) → ( { 𝑥 } ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ↔ ( 𝑓 supp 0 ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) ) |
51 |
46 49 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( { 𝑥 } ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ↔ ( 𝑓 supp 0 ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) ) |
52 |
45 51
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 supp 0 ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) |
53 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝑓 finSupp 0 ) |
54 |
32 5 33 37 38 40 43 52 53
|
gsumzres |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( 𝐺 Σg 𝑓 ) ) |
55 |
31 54
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝐴 = ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
56 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ ( 𝐼 ∖ { 𝑥 } ) ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ ( 𝐼 ∖ { 𝑥 } ) ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
57 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 |
58 |
57
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 ) |
59 |
13 14 58
|
dprdres |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
60 |
59
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) |
61 |
13 14
|
dprdf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
62 |
|
fssres |
⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 ) → ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) : ( 𝐼 ∖ { 𝑥 } ) ⟶ ( SubGrp ‘ 𝐺 ) ) |
63 |
61 57 62
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) : ( 𝐼 ∖ { 𝑥 } ) ⟶ ( SubGrp ‘ 𝐺 ) ) |
64 |
63
|
fdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → dom ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝐼 ∖ { 𝑥 } ) ) |
65 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
66 |
65
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑓 = ( 𝑘 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
67 |
66
|
reseq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( ( 𝑘 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) |
68 |
|
resmpt |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ( 𝑘 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
69 |
57 68
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) |
70 |
67 69
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
71 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) → 𝑘 ∈ 𝐼 ) |
72 |
6 13 14 41
|
dprdfcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
73 |
71 72
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
74 |
|
fvres |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) → ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑘 ) = ( 𝑆 ‘ 𝑘 ) ) |
75 |
74
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑘 ) = ( 𝑆 ‘ 𝑘 ) ) |
76 |
73 75
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑘 ) ) |
77 |
19
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝑥 } ) ∈ V ) |
78 |
77
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ V ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ V ) |
80 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) |
81 |
80
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → Fun ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
82 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑓 finSupp 0 ) |
83 |
|
ssdif |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ( 𝐼 ∖ { 𝑥 } ) ∖ ( 𝑓 supp 0 ) ) ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) |
84 |
57 83
|
ax-mp |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ∖ ( 𝑓 supp 0 ) ) ⊆ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) |
85 |
84
|
sseli |
⊢ ( 𝑘 ∈ ( ( 𝐼 ∖ { 𝑥 } ) ∖ ( 𝑓 supp 0 ) ) → 𝑘 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) |
86 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
87 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ V ) |
88 |
5
|
fvexi |
⊢ 0 ∈ V |
89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ V ) |
90 |
65 86 87 89
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ‘ 𝑘 ) = 0 ) |
91 |
85 90
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ { 𝑥 } ) ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ‘ 𝑘 ) = 0 ) |
92 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐼 ∖ { 𝑥 } ) ∈ V ) |
93 |
91 92
|
suppss2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
94 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ V ∧ Fun ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) ∧ ( 𝑓 finSupp 0 ∧ ( ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) ) → ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) finSupp 0 ) |
95 |
79 81 82 93 94
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) finSupp 0 ) |
96 |
56 60 64 76 95
|
dprdwd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ { ℎ ∈ X 𝑖 ∈ ( 𝐼 ∖ { 𝑥 } ) ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
97 |
70 96
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ∈ { ℎ ∈ X 𝑖 ∈ ( 𝐼 ∖ { 𝑥 } ) ( ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
98 |
5 56 60 64 97
|
eldprdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
99 |
26 98
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
100 |
55 99
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → 𝐴 ∈ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
101 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
102 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
103 |
61 15
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
104 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
105 |
60 104
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
106 |
13 14 15 5
|
dpjdisj |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
107 |
13 14 15 33
|
dpjcntz |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
108 |
101 102 5 33 103 105 106 107 27
|
pj1rid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝐴 ∈ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = 0 ) |
109 |
26 108
|
sylanl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝐴 ∈ ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = 0 ) |
110 |
100 109
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = 0 ) |
111 |
30 110
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = 0 ) |
112 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝐼 ∈ V ) |
113 |
111 112
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
114 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑓 finSupp 0 ∧ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) finSupp 0 ) |
115 |
21 23 25 113 114
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) finSupp 0 ) |
116 |
6 11 12 18 115
|
dprdwd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 ) |
117 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝐴 = ( 𝐺 Σg 𝑓 ) ) |
118 |
39
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
119 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 = ( 𝐺 Σg 𝑓 ) ) |
120 |
13 34 35
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Mnd ) |
121 |
6 13 14 41
|
dprdffsupp |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑓 finSupp 0 ) |
122 |
|
disjdif |
⊢ ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) ) = ∅ |
123 |
122
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) ) = ∅ ) |
124 |
|
undif2 |
⊢ ( { 𝑥 } ∪ ( 𝐼 ∖ { 𝑥 } ) ) = ( { 𝑥 } ∪ 𝐼 ) |
125 |
15
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → { 𝑥 } ⊆ 𝐼 ) |
126 |
|
ssequn1 |
⊢ ( { 𝑥 } ⊆ 𝐼 ↔ ( { 𝑥 } ∪ 𝐼 ) = 𝐼 ) |
127 |
125 126
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( { 𝑥 } ∪ 𝐼 ) = 𝐼 ) |
128 |
124 127
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 = ( { 𝑥 } ∪ ( 𝐼 ∖ { 𝑥 } ) ) ) |
129 |
32 5 101 33 120 87 65 42 121 123 128
|
gsumzsplit |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg 𝑓 ) = ( ( 𝐺 Σg ( 𝑓 ↾ { 𝑥 } ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
130 |
65 125
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ↾ { 𝑥 } ) = ( 𝑘 ∈ { 𝑥 } ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑓 ↾ { 𝑥 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 } ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) |
132 |
65 15
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
133 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) |
134 |
32 133
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐼 ∧ ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 } ↦ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑥 ) ) |
135 |
120 15 132 134
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 } ↦ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑥 ) ) |
136 |
131 135
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑓 ↾ { 𝑥 } ) ) = ( 𝑓 ‘ 𝑥 ) ) |
137 |
136
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 Σg ( 𝑓 ↾ { 𝑥 } ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
138 |
119 129 137
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
139 |
13 14 15 102
|
dpjlsm |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ( ( 𝑆 ‘ 𝑥 ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
140 |
17 139
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ ( ( 𝑆 ‘ 𝑥 ) ( LSSum ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
141 |
6 11 12 24
|
dprdfcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
142 |
101 102 5 33 103 105 106 107 27 140 141 98
|
pj1eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = ( 𝑓 ‘ 𝑥 ) ∧ ( ( ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ( proj1 ‘ 𝐺 ) ( 𝑆 ‘ 𝑥 ) ) ‘ 𝐴 ) = ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) ) |
143 |
138 142
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = ( 𝑓 ‘ 𝑥 ) ∧ ( ( ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ( proj1 ‘ 𝐺 ) ( 𝑆 ‘ 𝑥 ) ) ‘ 𝐴 ) = ( 𝐺 Σg ( 𝑓 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
144 |
143
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑆 ‘ 𝑥 ) ( proj1 ‘ 𝐺 ) ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ‘ 𝐴 ) = ( 𝑓 ‘ 𝑥 ) ) |
145 |
29 144
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = ( 𝑓 ‘ 𝑥 ) ) |
146 |
145
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
147 |
118 146
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
148 |
147
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
149 |
117 148
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
150 |
116 149
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) ) |
151 |
10 150
|
rexlimddv |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ∈ 𝑊 ∧ 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) ) |