Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjlem.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
4 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
5 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn 𝐼 ) |
6 |
|
fnressn |
⊢ ( ( 𝑆 Fn 𝐼 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑆 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) |
7 |
5 3 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) ) |
9 |
4 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
10 |
|
dprdsn |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ∧ ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) ) |
11 |
3 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 dom DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ∧ ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) ) |
12 |
11
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) |
13 |
8 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝑆 ‘ 𝑋 ) ) |