| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							⊢ 𝑃  =  ( 𝐺 dProj 𝑆 )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjlid.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								
							 | 
							dpjlid.4 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝑆 ‘ 𝑋 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dpjrid.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 7 | 
							
								
							 | 
							dpjrid.5 | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐼 )  | 
						
						
							| 8 | 
							
								
							 | 
							dpjrid.6 | 
							⊢ ( 𝜑  →  𝑌  ≠  𝑋 )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑌  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑌 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq1d | 
							⊢ ( 𝑥  =  𝑌  →  ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝑌  →  ( 𝑥  =  𝑋  ↔  𝑌  =  𝑋 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ifbid | 
							⊢ ( 𝑥  =  𝑌  →  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  )  =  if ( 𝑌  =  𝑋 ,  𝐴 ,   0  ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑌  →  ( ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  )  ↔  ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 )  =  if ( 𝑌  =  𝑋 ,  𝐴 ,   0  ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) )  =  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) )  | 
						
						
							| 16 | 
							
								6 14 1 2 4 5 15
							 | 
							dprdfid | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) )  ∈  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  }  ∧  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) ) )  =  𝐴 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) ) )  =  𝐴 )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) ) ) )  | 
						
						
							| 19 | 
							
								1 2 4
							 | 
							dprdub | 
							⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 20 | 
							
								19 5
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 21 | 
							
								16
							 | 
							simpld | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) )  ∈  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  } )  | 
						
						
							| 22 | 
							
								1 2 3 20 6 14 21
							 | 
							dpjeq | 
							⊢ ( 𝜑  →  ( 𝐴  =  ( 𝐺  Σg  ( 𝑥  ∈  𝐼  ↦  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) ) )  ↔  ∀ 𝑥  ∈  𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 )  =  if ( 𝑥  =  𝑋 ,  𝐴 ,   0  ) )  | 
						
						
							| 24 | 
							
								13 23 7
							 | 
							rspcdva | 
							⊢ ( 𝜑  →  ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 )  =  if ( 𝑌  =  𝑋 ,  𝐴 ,   0  ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ifnefalse | 
							⊢ ( 𝑌  ≠  𝑋  →  if ( 𝑌  =  𝑋 ,  𝐴 ,   0  )  =   0  )  | 
						
						
							| 26 | 
							
								8 25
							 | 
							syl | 
							⊢ ( 𝜑  →  if ( 𝑌  =  𝑋 ,  𝐴 ,   0  )  =   0  )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 )  =   0  )  |