Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjlid.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
5 |
|
dpjlid.4 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ‘ 𝑋 ) ) |
6 |
|
dpjrid.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
7 |
|
dpjrid.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
8 |
|
dpjrid.6 |
⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑌 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 = 𝑋 ↔ 𝑌 = 𝑋 ) ) |
12 |
11
|
ifbid |
⊢ ( 𝑥 = 𝑌 → if ( 𝑥 = 𝑋 , 𝐴 , 0 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑌 → ( ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ↔ ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) ) ) |
14 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) |
16 |
6 14 1 2 4 5 15
|
dprdfid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) = 𝐴 ) ) |
17 |
16
|
simprd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) = 𝐴 ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) ) |
19 |
1 2 4
|
dprdub |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
20 |
19 5
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 DProd 𝑆 ) ) |
21 |
16
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
22 |
1 2 3 20 6 14 21
|
dpjeq |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝑃 ‘ 𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) |
24 |
13 23 7
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) ) |
25 |
|
ifnefalse |
⊢ ( 𝑌 ≠ 𝑋 → if ( 𝑌 = 𝑋 , 𝐴 , 0 ) = 0 ) |
26 |
8 25
|
syl |
⊢ ( 𝜑 → if ( 𝑌 = 𝑋 , 𝐴 , 0 ) = 0 ) |
27 |
24 26
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑌 ) ‘ 𝐴 ) = 0 ) |