Metamath Proof Explorer


Theorem dpjrid

Description: The Y -th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
dpjlid.3 ( 𝜑𝑋𝐼 )
dpjlid.4 ( 𝜑𝐴 ∈ ( 𝑆𝑋 ) )
dpjrid.0 0 = ( 0g𝐺 )
dpjrid.5 ( 𝜑𝑌𝐼 )
dpjrid.6 ( 𝜑𝑌𝑋 )
Assertion dpjrid ( 𝜑 → ( ( 𝑃𝑌 ) ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
4 dpjlid.3 ( 𝜑𝑋𝐼 )
5 dpjlid.4 ( 𝜑𝐴 ∈ ( 𝑆𝑋 ) )
6 dpjrid.0 0 = ( 0g𝐺 )
7 dpjrid.5 ( 𝜑𝑌𝐼 )
8 dpjrid.6 ( 𝜑𝑌𝑋 )
9 fveq2 ( 𝑥 = 𝑌 → ( 𝑃𝑥 ) = ( 𝑃𝑌 ) )
10 9 fveq1d ( 𝑥 = 𝑌 → ( ( 𝑃𝑥 ) ‘ 𝐴 ) = ( ( 𝑃𝑌 ) ‘ 𝐴 ) )
11 eqeq1 ( 𝑥 = 𝑌 → ( 𝑥 = 𝑋𝑌 = 𝑋 ) )
12 11 ifbid ( 𝑥 = 𝑌 → if ( 𝑥 = 𝑋 , 𝐴 , 0 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) )
13 10 12 eqeq12d ( 𝑥 = 𝑌 → ( ( ( 𝑃𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ↔ ( ( 𝑃𝑌 ) ‘ 𝐴 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) ) )
14 eqid { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 } = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
15 eqid ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) = ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) )
16 6 14 1 2 4 5 15 dprdfid ( 𝜑 → ( ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 } ∧ ( 𝐺 Σg ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) = 𝐴 ) )
17 16 simprd ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) = 𝐴 )
18 17 eqcomd ( 𝜑𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) )
19 1 2 4 dprdub ( 𝜑 → ( 𝑆𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) )
20 19 5 sseldd ( 𝜑𝐴 ∈ ( 𝐺 DProd 𝑆 ) )
21 16 simpld ( 𝜑 → ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 } )
22 1 2 3 20 6 14 21 dpjeq ( 𝜑 → ( 𝐴 = ( 𝐺 Σg ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) ) ↔ ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) ) )
23 18 22 mpbid ( 𝜑 → ∀ 𝑥𝐼 ( ( 𝑃𝑥 ) ‘ 𝐴 ) = if ( 𝑥 = 𝑋 , 𝐴 , 0 ) )
24 13 23 7 rspcdva ( 𝜑 → ( ( 𝑃𝑌 ) ‘ 𝐴 ) = if ( 𝑌 = 𝑋 , 𝐴 , 0 ) )
25 ifnefalse ( 𝑌𝑋 → if ( 𝑌 = 𝑋 , 𝐴 , 0 ) = 0 )
26 8 25 syl ( 𝜑 → if ( 𝑌 = 𝑋 , 𝐴 , 0 ) = 0 )
27 24 26 eqtrd ( 𝜑 → ( ( 𝑃𝑌 ) ‘ 𝐴 ) = 0 )