Metamath Proof Explorer


Theorem dpjval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
dpjfval.q 𝑄 = ( proj1𝐺 )
dpjval.3 ( 𝜑𝑋𝐼 )
Assertion dpjval ( 𝜑 → ( 𝑃𝑋 ) = ( ( 𝑆𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
4 dpjfval.q 𝑄 = ( proj1𝐺 )
5 dpjval.3 ( 𝜑𝑋𝐼 )
6 1 2 3 4 dpjfval ( 𝜑𝑃 = ( 𝑥𝐼 ↦ ( ( 𝑆𝑥 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) )
7 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
8 7 fveq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝑆𝑥 ) = ( 𝑆𝑋 ) )
9 7 sneqd ( ( 𝜑𝑥 = 𝑋 ) → { 𝑥 } = { 𝑋 } )
10 9 difeq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) )
11 10 reseq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) )
12 11 oveq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) )
13 8 12 oveq12d ( ( 𝜑𝑥 = 𝑋 ) → ( ( 𝑆𝑥 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) )
14 ovexd ( 𝜑 → ( ( 𝑆𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ∈ V )
15 6 13 5 14 fvmptd ( 𝜑 → ( 𝑃𝑋 ) = ( ( 𝑆𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) )