Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dpjfval.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dpjfval.p |
⊢ 𝑃 = ( 𝐺 dProj 𝑆 ) |
4 |
|
dpjfval.q |
⊢ 𝑄 = ( proj1 ‘ 𝐺 ) |
5 |
|
dpjval.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
6 |
1 2 3 4
|
dpjfval |
⊢ ( 𝜑 → 𝑃 = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑆 ‘ 𝑥 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) |
9 |
7
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → { 𝑥 } = { 𝑋 } ) |
10 |
9
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) ) |
11 |
10
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) |
13 |
8 12
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑆 ‘ 𝑥 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |
14 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ∈ V ) |
15 |
6 13 5 14
|
fvmptd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝑋 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑋 } ) ) ) ) ) |