Metamath Proof Explorer
Description: Comparing two decimal integers (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dpltc.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
dpltc.b |
⊢ 𝐵 ∈ ℝ+ |
|
|
dpltc.c |
⊢ 𝐶 ∈ ℕ0 |
|
|
dpltc.d |
⊢ 𝐷 ∈ ℝ+ |
|
|
dpltc.1 |
⊢ 𝐴 < 𝐶 |
|
|
dpltc.2 |
⊢ 𝐵 < ; 1 0 |
|
Assertion |
dpltc |
⊢ ( 𝐴 . 𝐵 ) < ( 𝐶 . 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dpltc.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpltc.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dpltc.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
dpltc.d |
⊢ 𝐷 ∈ ℝ+ |
5 |
|
dpltc.1 |
⊢ 𝐴 < 𝐶 |
6 |
|
dpltc.2 |
⊢ 𝐵 < ; 1 0 |
7 |
1 2 3 4 6 5
|
dp2ltc |
⊢ _ 𝐴 𝐵 < _ 𝐶 𝐷 |
8 |
1 2
|
dpval3rp |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |
9 |
3 4
|
dpval3rp |
⊢ ( 𝐶 . 𝐷 ) = _ 𝐶 𝐷 |
10 |
7 8 9
|
3brtr4i |
⊢ ( 𝐴 . 𝐵 ) < ( 𝐶 . 𝐷 ) |