Step |
Hyp |
Ref |
Expression |
1 |
|
dplti.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dplti.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dplti.c |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
dplti.1 |
⊢ 𝐵 < ; 1 0 |
5 |
|
dplti.2 |
⊢ ( 𝐴 + 1 ) = 𝐶 |
6 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
7 |
2 6
|
ax-mp |
⊢ 𝐵 ∈ ℝ |
8 |
1 7
|
dpval2 |
⊢ ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
9 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
10 |
|
10pos |
⊢ 0 < ; 1 0 |
11 |
9 10
|
pm3.2i |
⊢ ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) |
12 |
|
elrp |
⊢ ( ; 1 0 ∈ ℝ+ ↔ ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) ) |
13 |
11 12
|
mpbir |
⊢ ; 1 0 ∈ ℝ+ |
14 |
|
divlt1lt |
⊢ ( ( 𝐵 ∈ ℝ ∧ ; 1 0 ∈ ℝ+ ) → ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) ) |
15 |
7 13 14
|
mp2an |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) |
16 |
4 15
|
mpbir |
⊢ ( 𝐵 / ; 1 0 ) < 1 |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
17 10
|
gtneii |
⊢ ; 1 0 ≠ 0 |
19 |
7 9 18
|
redivcli |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℝ |
20 |
|
1re |
⊢ 1 ∈ ℝ |
21 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
22 |
21 1
|
sselii |
⊢ 𝐴 ∈ ℝ |
23 |
19 20 22
|
ltadd2i |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) ) |
24 |
16 23
|
mpbi |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) |
25 |
8 24
|
eqbrtri |
⊢ ( 𝐴 . 𝐵 ) < ( 𝐴 + 1 ) |
26 |
25 5
|
breqtri |
⊢ ( 𝐴 . 𝐵 ) < 𝐶 |