| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprd0.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 3 | 
							
								1
							 | 
							dprdz | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ∅  ∈  V )  →  ( 𝐺 dom   DProd  ( 𝑥  ∈  ∅  ↦  {  0  } )  ∧  ( 𝐺  DProd  ( 𝑥  ∈  ∅  ↦  {  0  } ) )  =  {  0  } ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan2 | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝐺 dom   DProd  ( 𝑥  ∈  ∅  ↦  {  0  } )  ∧  ( 𝐺  DProd  ( 𝑥  ∈  ∅  ↦  {  0  } ) )  =  {  0  } ) )  | 
						
						
							| 5 | 
							
								
							 | 
							mpt0 | 
							⊢ ( 𝑥  ∈  ∅  ↦  {  0  } )  =  ∅  | 
						
						
							| 6 | 
							
								5
							 | 
							breq2i | 
							⊢ ( 𝐺 dom   DProd  ( 𝑥  ∈  ∅  ↦  {  0  } )  ↔  𝐺 dom   DProd  ∅ )  | 
						
						
							| 7 | 
							
								5
							 | 
							oveq2i | 
							⊢ ( 𝐺  DProd  ( 𝑥  ∈  ∅  ↦  {  0  } ) )  =  ( 𝐺  DProd  ∅ )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1i | 
							⊢ ( ( 𝐺  DProd  ( 𝑥  ∈  ∅  ↦  {  0  } ) )  =  {  0  }  ↔  ( 𝐺  DProd  ∅ )  =  {  0  } )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							anbi12i | 
							⊢ ( ( 𝐺 dom   DProd  ( 𝑥  ∈  ∅  ↦  {  0  } )  ∧  ( 𝐺  DProd  ( 𝑥  ∈  ∅  ↦  {  0  } ) )  =  {  0  } )  ↔  ( 𝐺 dom   DProd  ∅  ∧  ( 𝐺  DProd  ∅ )  =  {  0  } ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							sylib | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝐺 dom   DProd  ∅  ∧  ( 𝐺  DProd  ∅ )  =  {  0  } ) )  |