| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprd2d2.1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprd2d2.2 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dprd2d2.3 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							relxp | 
							⊢ Rel  ( { 𝑖 }  ×  𝐽 )  | 
						
						
							| 5 | 
							
								4
							 | 
							rgenw | 
							⊢ ∀ 𝑖  ∈  𝐼 Rel  ( { 𝑖 }  ×  𝐽 )  | 
						
						
							| 6 | 
							
								
							 | 
							reliun | 
							⊢ ( Rel  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  ↔  ∀ 𝑖  ∈  𝐼 Rel  ( { 𝑖 }  ×  𝐽 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpbir | 
							⊢ Rel  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →  Rel  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							ralrimivva | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝐼 ∀ 𝑗  ∈  𝐽 𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 )  =  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 )  | 
						
						
							| 11 | 
							
								10
							 | 
							fmpox | 
							⊢ ( ∀ 𝑖  ∈  𝐼 ∀ 𝑗  ∈  𝐽 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) : ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) : ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dmiun | 
							⊢ dom  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  =  ∪  𝑖  ∈  𝐼 dom  ( { 𝑖 }  ×  𝐽 )  | 
						
						
							| 14 | 
							
								
							 | 
							dmxpss | 
							⊢ dom  ( { 𝑖 }  ×  𝐽 )  ⊆  { 𝑖 }  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝑖  ∈  𝐼 )  | 
						
						
							| 16 | 
							
								15
							 | 
							snssd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  { 𝑖 }  ⊆  𝐼 )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  dom  ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼 )  | 
						
						
							| 18 | 
							
								17
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝐼 dom  ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼 )  | 
						
						
							| 19 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑖  ∈  𝐼 dom  ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼  ↔  ∀ 𝑖  ∈  𝐼 dom  ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∪  𝑖  ∈  𝐼 dom  ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼 )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							eqsstrid | 
							⊢ ( 𝜑  →  dom  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  ⊆  𝐼 )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑖  ∈  𝐼 )  | 
						
						
							| 23 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑗  ∈  𝐽 )  | 
						
						
							| 24 | 
							
								10
							 | 
							ovmpt4g | 
							⊢ ( ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  =  𝑆 )  | 
						
						
							| 25 | 
							
								22 23 1 24
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  =  𝑆 )  | 
						
						
							| 26 | 
							
								25
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  ∈  𝐽 )  →  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  =  𝑆 )  | 
						
						
							| 27 | 
							
								26
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  =  ( 𝑗  ∈  𝐽  ↦  𝑆 ) )  | 
						
						
							| 28 | 
							
								2 27
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝐼 𝐺 dom   DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝐺  | 
						
						
							| 31 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 dom   DProd   | 
						
						
							| 32 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑖 ⦋ 𝑥  /  𝑖 ⦌ 𝐽  | 
						
						
							| 33 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝑥  | 
						
						
							| 34 | 
							
								
							 | 
							nfmpo1 | 
							⊢ Ⅎ 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 )  | 
						
						
							| 35 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝑗  | 
						
						
							| 36 | 
							
								33 34 35
							 | 
							nfov | 
							⊢ Ⅎ 𝑖 ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							nfmpt | 
							⊢ Ⅎ 𝑖 ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  | 
						
						
							| 38 | 
							
								30 31 37
							 | 
							nfbr | 
							⊢ Ⅎ 𝑖 𝐺 dom   DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑖  =  𝑥  →  𝐽  =  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑖  =  𝑥  →  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  =  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							mpteq12dv | 
							⊢ ( 𝑖  =  𝑥  →  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  =  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							breq2d | 
							⊢ ( 𝑖  =  𝑥  →  ( 𝐺 dom   DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  ↔  𝐺 dom   DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							rspc | 
							⊢ ( 𝑥  ∈  𝐼  →  ( ∀ 𝑖  ∈  𝐼 𝐺 dom   DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  →  𝐺 dom   DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  | 
						
						
							| 44 | 
							
								29 43
							 | 
							mpan9 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  | 
						
						
							| 46 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑥  | 
						
						
							| 47 | 
							
								
							 | 
							nfmpo2 | 
							⊢ Ⅎ 𝑗 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 )  | 
						
						
							| 48 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑦  | 
						
						
							| 49 | 
							
								46 47 48
							 | 
							nfov | 
							⊢ Ⅎ 𝑗 ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 )  | 
						
						
							| 50 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  𝑦  →  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 )  =  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) )  | 
						
						
							| 51 | 
							
								45 49 50
							 | 
							cbvmpt | 
							⊢ ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  =  ( 𝑦  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑗  =  𝑧  | 
						
						
							| 53 | 
							
								32
							 | 
							nfcri | 
							⊢ Ⅎ 𝑖 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  | 
						
						
							| 54 | 
							
								52 53
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  | 
						
						
							| 55 | 
							
								39
							 | 
							eleq2d | 
							⊢ ( 𝑖  =  𝑥  →  ( 𝑗  ∈  𝐽  ↔  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							anbi2d | 
							⊢ ( 𝑖  =  𝑥  →  ( ( 𝑗  =  𝑧  ∧  𝑗  ∈  𝐽 )  ↔  ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 ) ) )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							equsexv | 
							⊢ ( ∃ 𝑖 ( 𝑖  =  𝑥  ∧  ( 𝑗  =  𝑧  ∧  𝑗  ∈  𝐽 ) )  ↔  ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 ) )  →  𝑖  =  𝑥 )  | 
						
						
							| 59 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 ) )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 ) )  →  𝑖  ∈  𝐼 )  | 
						
						
							| 61 | 
							
								60
							 | 
							biantrurd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 ) )  →  ( 𝑗  ∈  𝐽  ↔  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							pm5.32da | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 )  ∧  𝑗  ∈  𝐽 )  ↔  ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 )  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 )  ∧  𝑗  ∈  𝐽 )  ↔  ( 𝑖  =  𝑥  ∧  ( 𝑗  =  𝑧  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eqcom | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ↔  〈 𝑖 ,  𝑗 〉  =  〈 𝑥 ,  𝑧 〉 )  | 
						
						
							| 65 | 
							
								
							 | 
							vex | 
							⊢ 𝑖  ∈  V  | 
						
						
							| 66 | 
							
								
							 | 
							vex | 
							⊢ 𝑗  ∈  V  | 
						
						
							| 67 | 
							
								65 66
							 | 
							opth | 
							⊢ ( 〈 𝑖 ,  𝑗 〉  =  〈 𝑥 ,  𝑧 〉  ↔  ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 ) )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							bitr2i | 
							⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 )  ↔  〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉 )  | 
						
						
							| 69 | 
							
								68
							 | 
							anbi1i | 
							⊢ ( ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑧 )  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ↔  ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 70 | 
							
								62 63 69
							 | 
							3bitr3g | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑖  =  𝑥  ∧  ( 𝑗  =  𝑧  ∧  𝑗  ∈  𝐽 ) )  ↔  ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							exbidv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ∃ 𝑖 ( 𝑖  =  𝑥  ∧  ( 𝑗  =  𝑧  ∧  𝑗  ∈  𝐽 ) )  ↔  ∃ 𝑖 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 72 | 
							
								57 71
							 | 
							bitr3id | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  ↔  ∃ 𝑖 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							exbidv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ∃ 𝑗 ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  ↔  ∃ 𝑗 ∃ 𝑖 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 75 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑗  =  𝑧  →  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↔  𝑧  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							ceqsexv | 
							⊢ ( ∃ 𝑗 ( 𝑗  =  𝑧  ∧  𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  ↔  𝑧  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽 )  | 
						
						
							| 77 | 
							
								
							 | 
							excom | 
							⊢ ( ∃ 𝑗 ∃ 𝑖 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ↔  ∃ 𝑖 ∃ 𝑗 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 78 | 
							
								73 76 77
							 | 
							3bitr3g | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑧  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↔  ∃ 𝑖 ∃ 𝑗 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							elrelimasn | 
							⊢ ( Rel  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  →  ( 𝑧  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↔  𝑥 ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) 𝑧 ) )  | 
						
						
							| 80 | 
							
								7 79
							 | 
							ax-mp | 
							⊢ ( 𝑧  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↔  𝑥 ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) 𝑧 )  | 
						
						
							| 81 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑥 ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) 𝑧  ↔  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							eliunxp | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  ↔  ∃ 𝑖 ∃ 𝑗 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 83 | 
							
								80 81 82
							 | 
							3bitri | 
							⊢ ( 𝑧  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↔  ∃ 𝑖 ∃ 𝑗 ( 〈 𝑥 ,  𝑧 〉  =  〈 𝑖 ,  𝑗 〉  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) ) )  | 
						
						
							| 84 | 
							
								78 83
							 | 
							bitr4di | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑧  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↔  𝑧  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							eqrdv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  =  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							mpteq1d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑦  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) )  =  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) )  | 
						
						
							| 87 | 
							
								51 86
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) )  =  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) )  | 
						
						
							| 88 | 
							
								44 87
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺 dom   DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) )  | 
						
						
							| 89 | 
							
								27
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  =  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) )  | 
						
						
							| 91 | 
							
								3 90
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖  DProd   | 
						
						
							| 94 | 
							
								30 93 37
							 | 
							nfov | 
							⊢ Ⅎ 𝑖 ( 𝐺  DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  | 
						
						
							| 95 | 
							
								41
							 | 
							oveq2d | 
							⊢ ( 𝑖  =  𝑥  →  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  =  ( 𝐺  DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  | 
						
						
							| 96 | 
							
								92 94 95
							 | 
							cbvmpt | 
							⊢ ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  | 
						
						
							| 97 | 
							
								87
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺  DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) )  =  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  ⦋ 𝑥  /  𝑖 ⦌ 𝐽  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) ) )  | 
						
						
							| 99 | 
							
								96 98
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  ( 𝑖 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑗 ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) ) )  | 
						
						
							| 100 | 
							
								91 99
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 102 | 
							
								8 12 21 88 100 101
							 | 
							dprd2da | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) )  | 
						
						
							| 103 | 
							
								8 12 21 88 100 101
							 | 
							dprd2db | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) )  =  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) ) ) )  | 
						
						
							| 104 | 
							
								99 90
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑦  ∈  ( ∪  𝑖  ∈  𝐼 ( { 𝑖 }  ×  𝐽 )  “  { 𝑥 } )  ↦  ( 𝑥 ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) 𝑦 ) ) ) ) )  =  ( 𝐺  DProd  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) ) )  | 
						
						
							| 106 | 
							
								103 105
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) )  =  ( 𝐺  DProd  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) ) )  | 
						
						
							| 107 | 
							
								102 106
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 )  ∧  ( 𝐺  DProd  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  𝑆 ) )  =  ( 𝐺  DProd  ( 𝑖  ∈  𝐼  ↦  ( 𝐺  DProd  ( 𝑗  ∈  𝐽  ↦  𝑆 ) ) ) ) ) )  |