Step |
Hyp |
Ref |
Expression |
1 |
|
dprd2d.1 |
⊢ ( 𝜑 → Rel 𝐴 ) |
2 |
|
dprd2d.2 |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
dprd2d.3 |
⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐼 ) |
4 |
|
dprd2d.4 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) |
5 |
|
dprd2d.5 |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
6 |
|
dprd2d.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
7 |
1 2 3 4 5 6
|
dprd2da |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
8 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
10 |
|
relssres |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼 ) → ( 𝐴 ↾ 𝐼 ) = 𝐴 ) |
11 |
1 3 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐼 ) = 𝐴 ) |
12 |
11
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑆 “ ( 𝐴 ↾ 𝐼 ) ) = ( 𝑆 “ 𝐴 ) ) |
13 |
|
ffn |
⊢ ( 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) → 𝑆 Fn 𝐴 ) |
14 |
|
fnima |
⊢ ( 𝑆 Fn 𝐴 → ( 𝑆 “ 𝐴 ) = ran 𝑆 ) |
15 |
2 13 14
|
3syl |
⊢ ( 𝜑 → ( 𝑆 “ 𝐴 ) = ran 𝑆 ) |
16 |
12 15
|
eqtr2d |
⊢ ( 𝜑 → ran 𝑆 = ( 𝑆 “ ( 𝐴 ↾ 𝐼 ) ) ) |
17 |
16
|
unieqd |
⊢ ( 𝜑 → ∪ ran 𝑆 = ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐼 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ran 𝑆 ) = ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐼 ) ) ) ) |
19 |
|
ssidd |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐼 ) |
20 |
1 2 3 4 5 6 19
|
dprd2dlem1 |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐼 ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
21 |
9 18 20
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( 𝐺 DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |