Metamath Proof Explorer


Theorem dprd2dlem1

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 ( 𝜑 → Rel 𝐴 )
dprd2d.2 ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
dprd2d.3 ( 𝜑 → dom 𝐴𝐼 )
dprd2d.4 ( ( 𝜑𝑖𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
dprd2d.5 ( 𝜑𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
dprd2d.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
dprd2d.6 ( 𝜑𝐶𝐼 )
Assertion dprd2dlem1 ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) = ( 𝐺 DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dprd2d.1 ( 𝜑 → Rel 𝐴 )
2 dprd2d.2 ( 𝜑𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )
3 dprd2d.3 ( 𝜑 → dom 𝐴𝐼 )
4 dprd2d.4 ( ( 𝜑𝑖𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
5 dprd2d.5 ( 𝜑𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
6 dprd2d.k 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
7 dprd2d.6 ( 𝜑𝐶𝐼 )
8 dprdgrp ( 𝐺 dom DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → 𝐺 ∈ Grp )
9 5 8 syl ( 𝜑𝐺 ∈ Grp )
10 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
11 10 subgacs ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) )
12 acsmre ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
13 9 11 12 3syl ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) )
14 ffun ( 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 )
15 funiunfv ( Fun 𝑆 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) = ( 𝑆 “ ( 𝐴𝐶 ) ) )
16 2 14 15 3syl ( 𝜑 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) = ( 𝑆 “ ( 𝐴𝐶 ) ) )
17 resss ( 𝐴𝐶 ) ⊆ 𝐴
18 17 sseli ( 𝑥 ∈ ( 𝐴𝐶 ) → 𝑥𝐴 )
19 1 2 3 4 5 6 dprd2dlem2 ( ( 𝜑𝑥𝐴 ) → ( 𝑆𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
20 18 19 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ( 𝑆𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
21 1st2nd ( ( Rel 𝐴𝑥𝐴 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
22 1 18 21 syl2an ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
23 simpr ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝑥 ∈ ( 𝐴𝐶 ) )
24 22 23 eqeltrrd ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴𝐶 ) )
25 fvex ( 2nd𝑥 ) ∈ V
26 25 opelresi ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴𝐶 ) ↔ ( ( 1st𝑥 ) ∈ 𝐶 ∧ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝐴 ) )
27 26 simplbi ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( 𝐴𝐶 ) → ( 1st𝑥 ) ∈ 𝐶 )
28 24 27 syl ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ( 1st𝑥 ) ∈ 𝐶 )
29 ovex ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ V
30 eqid ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) )
31 sneq ( 𝑖 = ( 1st𝑥 ) → { 𝑖 } = { ( 1st𝑥 ) } )
32 31 imaeq2d ( 𝑖 = ( 1st𝑥 ) → ( 𝐴 “ { 𝑖 } ) = ( 𝐴 “ { ( 1st𝑥 ) } ) )
33 oveq1 ( 𝑖 = ( 1st𝑥 ) → ( 𝑖 𝑆 𝑗 ) = ( ( 1st𝑥 ) 𝑆 𝑗 ) )
34 32 33 mpteq12dv ( 𝑖 = ( 1st𝑥 ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) )
35 34 oveq2d ( 𝑖 = ( 1st𝑥 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) )
36 30 35 elrnmpt1s ( ( ( 1st𝑥 ) ∈ 𝐶 ∧ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ V ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
37 28 29 36 sylancl ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
38 elssuni ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
39 37 38 syl ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st𝑥 ) } ) ↦ ( ( 1st𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
40 20 39 sstrd ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → ( 𝑆𝑥 ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
41 40 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
42 iunss ( 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
43 41 42 sylibr ( 𝜑 𝑥 ∈ ( 𝐴𝐶 ) ( 𝑆𝑥 ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
44 16 43 eqsstrrd ( 𝜑 ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
45 7 sselda ( ( 𝜑𝑖𝐶 ) → 𝑖𝐼 )
46 45 4 syldan ( ( 𝜑𝑖𝐶 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) )
47 ovex ( 𝑖 𝑆 𝑗 ) ∈ V
48 eqid ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) )
49 47 48 dmmpti dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } )
50 49 a1i ( ( 𝜑𝑖𝐶 ) → dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } ) )
51 imassrn ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ran 𝑆
52 2 frnd ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
53 mresspw ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
54 13 53 syl ( 𝜑 → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
55 52 54 sstrd ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) )
56 51 55 sstrid ( 𝜑 → ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
57 sspwuni ( ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) )
58 56 57 sylib ( 𝜑 ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) )
59 6 mrccl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
60 13 58 59 syl2anc ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
61 60 adantr ( ( 𝜑𝑖𝐶 ) → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
62 oveq2 ( 𝑗 = 𝑘 → ( 𝑖 𝑆 𝑗 ) = ( 𝑖 𝑆 𝑘 ) )
63 62 48 47 fvmpt3i ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) )
64 63 adantl ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) )
65 df-ov ( 𝑖 𝑆 𝑘 ) = ( 𝑆 ‘ ⟨ 𝑖 , 𝑘 ⟩ )
66 2 ffnd ( 𝜑𝑆 Fn 𝐴 )
67 66 ad2antrr ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑆 Fn 𝐴 )
68 17 a1i ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝐴𝐶 ) ⊆ 𝐴 )
69 simplr ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖𝐶 )
70 elrelimasn ( Rel 𝐴 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) )
71 1 70 syl ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) )
72 71 adantr ( ( 𝜑𝑖𝐶 ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) )
73 72 biimpa ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖 𝐴 𝑘 )
74 df-br ( 𝑖 𝐴 𝑘 ↔ ⟨ 𝑖 , 𝑘 ⟩ ∈ 𝐴 )
75 73 74 sylib ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ⟨ 𝑖 , 𝑘 ⟩ ∈ 𝐴 )
76 vex 𝑘 ∈ V
77 76 opelresi ( ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝐴𝐶 ) ↔ ( 𝑖𝐶 ∧ ⟨ 𝑖 , 𝑘 ⟩ ∈ 𝐴 ) )
78 69 75 77 sylanbrc ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝐴𝐶 ) )
79 fnfvima ( ( 𝑆 Fn 𝐴 ∧ ( 𝐴𝐶 ) ⊆ 𝐴 ∧ ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝐴𝐶 ) ) → ( 𝑆 ‘ ⟨ 𝑖 , 𝑘 ⟩ ) ∈ ( 𝑆 “ ( 𝐴𝐶 ) ) )
80 67 68 78 79 syl3anc ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑆 ‘ ⟨ 𝑖 , 𝑘 ⟩ ) ∈ ( 𝑆 “ ( 𝐴𝐶 ) ) )
81 65 80 eqeltrid ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴𝐶 ) ) )
82 elssuni ( ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴𝐶 ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ( 𝑆 “ ( 𝐴𝐶 ) ) )
83 81 82 syl ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ( 𝑆 “ ( 𝐴𝐶 ) ) )
84 13 6 58 mrcssidd ( 𝜑 ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
85 84 ad2antrr ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑆 “ ( 𝐴𝐶 ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
86 83 85 sstrd ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
87 64 86 eqsstrd ( ( ( 𝜑𝑖𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
88 46 50 61 87 dprdlub ( ( 𝜑𝑖𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
89 ovex ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ V
90 89 elpw ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ↔ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
91 88 90 sylibr ( ( 𝜑𝑖𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
92 91 fmpttd ( 𝜑 → ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) : 𝐶 ⟶ 𝒫 ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
93 92 frnd ( 𝜑 → ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
94 sspwuni ( ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ↔ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
95 93 94 sylib ( 𝜑 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
96 13 6 mrcssvd ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ⊆ ( Base ‘ 𝐺 ) )
97 95 96 sstrd ( 𝜑 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( Base ‘ 𝐺 ) )
98 13 6 44 97 mrcssd ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ⊆ ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )
99 6 mrcsscl ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ∧ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
100 13 95 60 99 syl3anc ( 𝜑 → ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) )
101 98 100 eqssd ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) = ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )
102 eqid ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) )
103 89 102 dmmpti dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼
104 103 a1i ( 𝜑 → dom ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 )
105 5 104 7 dprdres ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ∧ ( 𝐺 DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) )
106 105 simpld ( 𝜑𝐺 dom DProd ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) )
107 7 resmptd ( 𝜑 → ( ( 𝑖𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) = ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
108 106 107 breqtrd ( 𝜑𝐺 dom DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) )
109 6 dprdspan ( 𝐺 dom DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )
110 108 109 syl ( 𝜑 → ( 𝐺 DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ran ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )
111 101 110 eqtr4d ( 𝜑 → ( 𝐾 ( 𝑆 “ ( 𝐴𝐶 ) ) ) = ( 𝐺 DProd ( 𝑖𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) )