Step |
Hyp |
Ref |
Expression |
1 |
|
dprd2d.1 |
⊢ ( 𝜑 → Rel 𝐴 ) |
2 |
|
dprd2d.2 |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
dprd2d.3 |
⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐼 ) |
4 |
|
dprd2d.4 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) |
5 |
|
dprd2d.5 |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
6 |
|
dprd2d.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
dprd2d.6 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
8 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → 𝐺 ∈ Grp ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
11 |
10
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
12 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
13 |
9 11 12
|
3syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
14 |
|
ffun |
⊢ ( 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) |
15 |
|
funiunfv |
⊢ ( Fun 𝑆 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) = ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
16 |
2 14 15
|
3syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) = ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
17 |
|
resss |
⊢ ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 |
18 |
17
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
19 |
1 2 3 4 5 6
|
dprd2dlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
21 |
|
1st2nd |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
22 |
1 18 21
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) |
24 |
22 23
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) |
25 |
|
fvex |
⊢ ( 2nd ‘ 𝑥 ) ∈ V |
26 |
25
|
opelresi |
⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) ↔ ( ( 1st ‘ 𝑥 ) ∈ 𝐶 ∧ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝐴 ) ) |
27 |
26
|
simplbi |
⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ ( 𝐴 ↾ 𝐶 ) → ( 1st ‘ 𝑥 ) ∈ 𝐶 ) |
28 |
24 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 1st ‘ 𝑥 ) ∈ 𝐶 ) |
29 |
|
ovex |
⊢ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ V |
30 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) |
31 |
|
sneq |
⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → { 𝑖 } = { ( 1st ‘ 𝑥 ) } ) |
32 |
31
|
imaeq2d |
⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝐴 “ { 𝑖 } ) = ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ) |
33 |
|
oveq1 |
⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝑖 𝑆 𝑗 ) = ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) |
34 |
32 33
|
mpteq12dv |
⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑖 = ( 1st ‘ 𝑥 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) = ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ) |
36 |
30 35
|
elrnmpt1s |
⊢ ( ( ( 1st ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ V ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
37 |
28 29 36
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
38 |
|
elssuni |
⊢ ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ∈ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { ( 1st ‘ 𝑥 ) } ) ↦ ( ( 1st ‘ 𝑥 ) 𝑆 𝑗 ) ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
40 |
20 39
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
42 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
43 |
41 42
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( 𝐴 ↾ 𝐶 ) ( 𝑆 ‘ 𝑥 ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
44 |
16 43
|
eqsstrrd |
⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
45 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → 𝑖 ∈ 𝐼 ) |
46 |
45 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) |
47 |
|
ovex |
⊢ ( 𝑖 𝑆 𝑗 ) ∈ V |
48 |
|
eqid |
⊢ ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) |
49 |
47 48
|
dmmpti |
⊢ dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } ) |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → dom ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) = ( 𝐴 “ { 𝑖 } ) ) |
51 |
|
imassrn |
⊢ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ran 𝑆 |
52 |
2
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
53 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
54 |
13 53
|
syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
55 |
52 54
|
sstrd |
⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
56 |
51 55
|
sstrid |
⊢ ( 𝜑 → ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
57 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) |
58 |
56 57
|
sylib |
⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) |
59 |
6
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
60 |
13 58 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
62 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑖 𝑆 𝑗 ) = ( 𝑖 𝑆 𝑘 ) ) |
63 |
62 48 47
|
fvmpt3i |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) = ( 𝑖 𝑆 𝑘 ) ) |
65 |
|
df-ov |
⊢ ( 𝑖 𝑆 𝑘 ) = ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) |
66 |
2
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn 𝐴 ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑆 Fn 𝐴 ) |
68 |
17
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 ) |
69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖 ∈ 𝐶 ) |
70 |
|
elrelimasn |
⊢ ( Rel 𝐴 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) |
71 |
1 70
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ↔ 𝑖 𝐴 𝑘 ) ) |
73 |
72
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 𝑖 𝐴 𝑘 ) |
74 |
|
df-br |
⊢ ( 𝑖 𝐴 𝑘 ↔ 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) |
75 |
73 74
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) |
76 |
|
vex |
⊢ 𝑘 ∈ V |
77 |
76
|
opelresi |
⊢ ( 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ↔ ( 𝑖 ∈ 𝐶 ∧ 〈 𝑖 , 𝑘 〉 ∈ 𝐴 ) ) |
78 |
69 75 77
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) |
79 |
|
fnfvima |
⊢ ( ( 𝑆 Fn 𝐴 ∧ ( 𝐴 ↾ 𝐶 ) ⊆ 𝐴 ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
80 |
67 68 78 79
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑆 ‘ 〈 𝑖 , 𝑘 〉 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
81 |
65 80
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
82 |
|
elssuni |
⊢ ( ( 𝑖 𝑆 𝑘 ) ∈ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
83 |
81 82
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) |
84 |
13 6 58
|
mrcssidd |
⊢ ( 𝜑 → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
85 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
86 |
83 85
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( 𝑖 𝑆 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
87 |
64 86
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑖 } ) ) → ( ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ‘ 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
88 |
46 50 61 87
|
dprdlub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
89 |
|
ovex |
⊢ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ V |
90 |
89
|
elpw |
⊢ ( ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ↔ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
91 |
88 90
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ∈ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
92 |
91
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) : 𝐶 ⟶ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
93 |
92
|
frnd |
⊢ ( 𝜑 → ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
94 |
|
sspwuni |
⊢ ( ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ 𝒫 ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ↔ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
95 |
93 94
|
sylib |
⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
96 |
13 6
|
mrcssvd |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
97 |
95 96
|
sstrd |
⊢ ( 𝜑 → ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
98 |
13 6 44 97
|
mrcssd |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ⊆ ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
99 |
6
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∧ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
100 |
13 95 60 99
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ⊆ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) ) |
101 |
98 100
|
eqssd |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
102 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) |
103 |
89 102
|
dmmpti |
⊢ dom ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 |
104 |
103
|
a1i |
⊢ ( 𝜑 → dom ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) = 𝐼 ) |
105 |
5 104 7
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ∧ ( 𝐺 DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) ) |
106 |
105
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) ) |
107 |
7
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ↾ 𝐶 ) = ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
108 |
106 107
|
breqtrd |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) |
109 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) → ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
110 |
108 109
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) = ( 𝐾 ‘ ∪ ran ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |
111 |
101 110
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐴 ↾ 𝐶 ) ) ) = ( 𝐺 DProd ( 𝑖 ∈ 𝐶 ↦ ( 𝐺 DProd ( 𝑗 ∈ ( 𝐴 “ { 𝑖 } ) ↦ ( 𝑖 𝑆 𝑗 ) ) ) ) ) ) |