Step |
Hyp |
Ref |
Expression |
1 |
|
dprdcntz.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdcntz.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdcntz.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
4 |
|
dprdcntz.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
5 |
|
dprdcntz.5 |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
6 |
|
dprdcntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
7 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑌 → ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
9 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
10 |
9
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
13 |
10 12
|
raleqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
14 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
17 |
6 15 16
|
dmdprd |
⊢ ( ( 𝐼 ∈ V ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
18 |
14 2 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
19 |
1 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
20 |
19
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
21 |
|
simpl |
⊢ ( ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
22 |
21
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
23 |
20 22
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
24 |
13 23 3
|
rspcdva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
25 |
5
|
necomd |
⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
26 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ 𝐼 ∧ 𝑌 ≠ 𝑋 ) ) |
27 |
4 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) ) |
28 |
8 24 27
|
rspcdva |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |