Metamath Proof Explorer


Theorem dprdcntz

Description: The function S is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdcntz.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdcntz.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdcntz.3 ( 𝜑𝑋𝐼 )
dprdcntz.4 ( 𝜑𝑌𝐼 )
dprdcntz.5 ( 𝜑𝑋𝑌 )
dprdcntz.z 𝑍 = ( Cntz ‘ 𝐺 )
Assertion dprdcntz ( 𝜑 → ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dprdcntz.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdcntz.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdcntz.3 ( 𝜑𝑋𝐼 )
4 dprdcntz.4 ( 𝜑𝑌𝐼 )
5 dprdcntz.5 ( 𝜑𝑋𝑌 )
6 dprdcntz.z 𝑍 = ( Cntz ‘ 𝐺 )
7 2fveq3 ( 𝑦 = 𝑌 → ( 𝑍 ‘ ( 𝑆𝑦 ) ) = ( 𝑍 ‘ ( 𝑆𝑌 ) ) )
8 7 sseq2d ( 𝑦 = 𝑌 → ( ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ↔ ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑌 ) ) ) )
9 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
10 9 difeq2d ( 𝑥 = 𝑋 → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) )
11 fveq2 ( 𝑥 = 𝑋 → ( 𝑆𝑥 ) = ( 𝑆𝑋 ) )
12 11 sseq1d ( 𝑥 = 𝑋 → ( ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ↔ ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ) )
13 10 12 raleqbidv ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ) )
14 1 2 dprddomcld ( 𝜑𝐼 ∈ V )
15 eqid ( 0g𝐺 ) = ( 0g𝐺 )
16 eqid ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )
17 6 15 16 dmdprd ( ( 𝐼 ∈ V ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) ) ) )
18 14 2 17 syl2anc ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) ) ) )
19 1 18 mpbid ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) ) )
20 19 simp3d ( 𝜑 → ∀ 𝑥𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) )
21 simpl ( ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) )
22 21 ralimi ( ∀ 𝑥𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) ∧ ( ( 𝑆𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g𝐺 ) } ) → ∀ 𝑥𝐼𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) )
23 20 22 syl ( 𝜑 → ∀ 𝑥𝐼𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) )
24 13 23 3 rspcdva ( 𝜑 → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑦 ) ) )
25 5 necomd ( 𝜑𝑌𝑋 )
26 eldifsn ( 𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) ↔ ( 𝑌𝐼𝑌𝑋 ) )
27 4 25 26 sylanbrc ( 𝜑𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) )
28 8 24 27 rspcdva ( 𝜑 → ( 𝑆𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑌 ) ) )