Step |
Hyp |
Ref |
Expression |
1 |
|
dprdcntz2.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdcntz2.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdcntz2.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
4 |
|
dprdcntz2.d |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) |
5 |
|
dprdcntz2.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
6 |
|
dprdcntz2.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
7 |
1 2 3
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
9 |
|
dmres |
⊢ dom ( 𝑆 ↾ 𝐶 ) = ( 𝐶 ∩ dom 𝑆 ) |
10 |
3 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐶 ⊆ dom 𝑆 ) |
11 |
|
df-ss |
⊢ ( 𝐶 ⊆ dom 𝑆 ↔ ( 𝐶 ∩ dom 𝑆 ) = 𝐶 ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∩ dom 𝑆 ) = 𝐶 ) |
13 |
9 12
|
eqtrid |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
14 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
17 |
16
|
dprdssv |
⊢ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) |
18 |
16 6
|
cntzsubg |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
15 17 18
|
sylancl |
⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
22 |
1 2 4
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
25 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
27 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐼 ) |
28 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
30 |
27 29
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
31 |
|
dmres |
⊢ dom ( 𝑆 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝑆 ) |
32 |
4 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐷 ⊆ dom 𝑆 ) |
33 |
|
df-ss |
⊢ ( 𝐷 ⊆ dom 𝑆 ↔ ( 𝐷 ∩ dom 𝑆 ) = 𝐷 ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → ( 𝐷 ∩ dom 𝑆 ) = 𝐷 ) |
35 |
31 34
|
eqtrid |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
37 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 ∈ Grp ) |
38 |
16
|
subgss |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) |
39 |
30 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) |
40 |
16 6
|
cntzsubg |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
41 |
37 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
42 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
44 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐺 dom DProd 𝑆 ) |
45 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → dom 𝑆 = 𝐼 ) |
46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐷 ⊆ 𝐼 ) |
47 |
46
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐼 ) |
48 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑥 ∈ 𝐼 ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
50 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
51 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) |
52 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑥 ∈ ∅ ) ) |
53 |
51 52
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ↔ 𝑥 ∈ ∅ ) ) |
54 |
50 53
|
mtbiri |
⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) |
55 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷 ) ↔ ¬ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) |
56 |
54 55
|
sylibr |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷 ) ) |
57 |
56
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ¬ 𝑥 ∈ 𝐷 ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ¬ 𝑥 ∈ 𝐷 ) |
59 |
|
nelne2 |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑥 ∈ 𝐷 ) → 𝑦 ≠ 𝑥 ) |
60 |
49 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ≠ 𝑥 ) |
61 |
44 45 47 48 60 6
|
dprdcntz |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
62 |
43 61
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
63 |
24 36 41 62
|
dprdlub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
64 |
6 26 30 63
|
cntzrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
65 |
21 64
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
66 |
8 13 19 65
|
dprdlub |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |