| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdcntz2.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdcntz2.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdcntz2.c | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdcntz2.d | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝐼 )  | 
						
						
							| 5 | 
							
								
							 | 
							dprdcntz2.i | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							dprdcntz2.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 7 | 
							
								1 2 3
							 | 
							dprdres | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dmres | 
							⊢ dom  ( 𝑆  ↾  𝐶 )  =  ( 𝐶  ∩  dom  𝑆 )  | 
						
						
							| 10 | 
							
								3 2
							 | 
							sseqtrrd | 
							⊢ ( 𝜑  →  𝐶  ⊆  dom  𝑆 )  | 
						
						
							| 11 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝐶  ⊆  dom  𝑆  ↔  ( 𝐶  ∩  dom  𝑆 )  =  𝐶 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  dom  𝑆 )  =  𝐶 )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 14 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 17 | 
							
								16
							 | 
							dprdssv | 
							⊢ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( Base ‘ 𝐺 )  | 
						
						
							| 18 | 
							
								16 6
							 | 
							cntzsubg | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 22 | 
							
								1 2 4
							 | 
							dprdres | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 27 | 
							
								3
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 28 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							dmres | 
							⊢ dom  ( 𝑆  ↾  𝐷 )  =  ( 𝐷  ∩  dom  𝑆 )  | 
						
						
							| 32 | 
							
								4 2
							 | 
							sseqtrrd | 
							⊢ ( 𝜑  →  𝐷  ⊆  dom  𝑆 )  | 
						
						
							| 33 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝐷  ⊆  dom  𝑆  ↔  ( 𝐷  ∩  dom  𝑆 )  =  𝐷 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝐷  ∩  dom  𝑆 )  =  𝐷 )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 37 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐺  ∈  Grp )  | 
						
						
							| 38 | 
							
								16
							 | 
							subgss | 
							⊢ ( ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 39 | 
							
								30 38
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 40 | 
							
								16 6
							 | 
							cntzsubg | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑆 ‘ 𝑥 )  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 41 | 
							
								37 39 40
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑦  ∈  𝐷  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) )  | 
						
						
							| 44 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 45 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 46 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐷  ⊆  𝐼 )  | 
						
						
							| 47 | 
							
								46
							 | 
							sselda | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐼 )  | 
						
						
							| 48 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐷 )  | 
						
						
							| 50 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑥  ∈  ∅  | 
						
						
							| 51 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑥  ∈  ( 𝐶  ∩  𝐷 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑥  ∈  𝐷 ) )  | 
						
						
							| 52 | 
							
								5
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐶  ∩  𝐷 )  ↔  𝑥  ∈  ∅ ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							bitr3id | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐶  ∧  𝑥  ∈  𝐷 )  ↔  𝑥  ∈  ∅ ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							mtbiri | 
							⊢ ( 𝜑  →  ¬  ( 𝑥  ∈  𝐶  ∧  𝑥  ∈  𝐷 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							imnan | 
							⊢ ( ( 𝑥  ∈  𝐶  →  ¬  𝑥  ∈  𝐷 )  ↔  ¬  ( 𝑥  ∈  𝐶  ∧  𝑥  ∈  𝐷 ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  →  ¬  𝑥  ∈  𝐷 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ¬  𝑥  ∈  𝐷 )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  ¬  𝑥  ∈  𝐷 )  | 
						
						
							| 59 | 
							
								
							 | 
							nelne2 | 
							⊢ ( ( 𝑦  ∈  𝐷  ∧  ¬  𝑥  ∈  𝐷 )  →  𝑦  ≠  𝑥 )  | 
						
						
							| 60 | 
							
								49 58 59
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ≠  𝑥 )  | 
						
						
							| 61 | 
							
								44 45 47 48 60 6
							 | 
							dprdcntz | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) )  | 
						
						
							| 62 | 
							
								43 61
							 | 
							eqsstrd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) )  | 
						
						
							| 63 | 
							
								24 36 41 62
							 | 
							dprdlub | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) )  | 
						
						
							| 64 | 
							
								6 26 30 63
							 | 
							cntzrecd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 65 | 
							
								21 64
							 | 
							eqsstrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 66 | 
							
								8 13 19 65
							 | 
							dprdlub | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝑍 ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  |