Metamath Proof Explorer


Theorem dprdcntz2

Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprdcntz2.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdcntz2.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdcntz2.c ( 𝜑𝐶𝐼 )
dprdcntz2.d ( 𝜑𝐷𝐼 )
dprdcntz2.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
dprdcntz2.z 𝑍 = ( Cntz ‘ 𝐺 )
Assertion dprdcntz2 ( 𝜑 → ( 𝐺 DProd ( 𝑆𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 dprdcntz2.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdcntz2.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdcntz2.c ( 𝜑𝐶𝐼 )
4 dprdcntz2.d ( 𝜑𝐷𝐼 )
5 dprdcntz2.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
6 dprdcntz2.z 𝑍 = ( Cntz ‘ 𝐺 )
7 1 2 3 dprdres ( 𝜑 → ( 𝐺 dom DProd ( 𝑆𝐶 ) ∧ ( 𝐺 DProd ( 𝑆𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) )
8 7 simpld ( 𝜑𝐺 dom DProd ( 𝑆𝐶 ) )
9 dmres dom ( 𝑆𝐶 ) = ( 𝐶 ∩ dom 𝑆 )
10 3 2 sseqtrrd ( 𝜑𝐶 ⊆ dom 𝑆 )
11 df-ss ( 𝐶 ⊆ dom 𝑆 ↔ ( 𝐶 ∩ dom 𝑆 ) = 𝐶 )
12 10 11 sylib ( 𝜑 → ( 𝐶 ∩ dom 𝑆 ) = 𝐶 )
13 9 12 eqtrid ( 𝜑 → dom ( 𝑆𝐶 ) = 𝐶 )
14 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
15 1 14 syl ( 𝜑𝐺 ∈ Grp )
16 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
17 16 dprdssv ( 𝐺 DProd ( 𝑆𝐷 ) ) ⊆ ( Base ‘ 𝐺 )
18 16 6 cntzsubg ( ( 𝐺 ∈ Grp ∧ ( 𝐺 DProd ( 𝑆𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
19 15 17 18 sylancl ( 𝜑 → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) )
20 fvres ( 𝑥𝐶 → ( ( 𝑆𝐶 ) ‘ 𝑥 ) = ( 𝑆𝑥 ) )
21 20 adantl ( ( 𝜑𝑥𝐶 ) → ( ( 𝑆𝐶 ) ‘ 𝑥 ) = ( 𝑆𝑥 ) )
22 1 2 4 dprdres ( 𝜑 → ( 𝐺 dom DProd ( 𝑆𝐷 ) ∧ ( 𝐺 DProd ( 𝑆𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) )
23 22 simpld ( 𝜑𝐺 dom DProd ( 𝑆𝐷 ) )
24 23 adantr ( ( 𝜑𝑥𝐶 ) → 𝐺 dom DProd ( 𝑆𝐷 ) )
25 dprdsubg ( 𝐺 dom DProd ( 𝑆𝐷 ) → ( 𝐺 DProd ( 𝑆𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
26 24 25 syl ( ( 𝜑𝑥𝐶 ) → ( 𝐺 DProd ( 𝑆𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
27 3 sselda ( ( 𝜑𝑥𝐶 ) → 𝑥𝐼 )
28 1 2 dprdf2 ( 𝜑𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )
29 28 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) )
30 27 29 syldan ( ( 𝜑𝑥𝐶 ) → ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) )
31 dmres dom ( 𝑆𝐷 ) = ( 𝐷 ∩ dom 𝑆 )
32 4 2 sseqtrrd ( 𝜑𝐷 ⊆ dom 𝑆 )
33 df-ss ( 𝐷 ⊆ dom 𝑆 ↔ ( 𝐷 ∩ dom 𝑆 ) = 𝐷 )
34 32 33 sylib ( 𝜑 → ( 𝐷 ∩ dom 𝑆 ) = 𝐷 )
35 31 34 eqtrid ( 𝜑 → dom ( 𝑆𝐷 ) = 𝐷 )
36 35 adantr ( ( 𝜑𝑥𝐶 ) → dom ( 𝑆𝐷 ) = 𝐷 )
37 15 adantr ( ( 𝜑𝑥𝐶 ) → 𝐺 ∈ Grp )
38 16 subgss ( ( 𝑆𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆𝑥 ) ⊆ ( Base ‘ 𝐺 ) )
39 30 38 syl ( ( 𝜑𝑥𝐶 ) → ( 𝑆𝑥 ) ⊆ ( Base ‘ 𝐺 ) )
40 16 6 cntzsubg ( ( 𝐺 ∈ Grp ∧ ( 𝑆𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝑆𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
41 37 39 40 syl2anc ( ( 𝜑𝑥𝐶 ) → ( 𝑍 ‘ ( 𝑆𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
42 fvres ( 𝑦𝐷 → ( ( 𝑆𝐷 ) ‘ 𝑦 ) = ( 𝑆𝑦 ) )
43 42 adantl ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → ( ( 𝑆𝐷 ) ‘ 𝑦 ) = ( 𝑆𝑦 ) )
44 1 ad2antrr ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → 𝐺 dom DProd 𝑆 )
45 2 ad2antrr ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → dom 𝑆 = 𝐼 )
46 4 adantr ( ( 𝜑𝑥𝐶 ) → 𝐷𝐼 )
47 46 sselda ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → 𝑦𝐼 )
48 27 adantr ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → 𝑥𝐼 )
49 simpr ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → 𝑦𝐷 )
50 noel ¬ 𝑥 ∈ ∅
51 elin ( 𝑥 ∈ ( 𝐶𝐷 ) ↔ ( 𝑥𝐶𝑥𝐷 ) )
52 5 eleq2d ( 𝜑 → ( 𝑥 ∈ ( 𝐶𝐷 ) ↔ 𝑥 ∈ ∅ ) )
53 51 52 bitr3id ( 𝜑 → ( ( 𝑥𝐶𝑥𝐷 ) ↔ 𝑥 ∈ ∅ ) )
54 50 53 mtbiri ( 𝜑 → ¬ ( 𝑥𝐶𝑥𝐷 ) )
55 imnan ( ( 𝑥𝐶 → ¬ 𝑥𝐷 ) ↔ ¬ ( 𝑥𝐶𝑥𝐷 ) )
56 54 55 sylibr ( 𝜑 → ( 𝑥𝐶 → ¬ 𝑥𝐷 ) )
57 56 imp ( ( 𝜑𝑥𝐶 ) → ¬ 𝑥𝐷 )
58 57 adantr ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → ¬ 𝑥𝐷 )
59 nelne2 ( ( 𝑦𝐷 ∧ ¬ 𝑥𝐷 ) → 𝑦𝑥 )
60 49 58 59 syl2anc ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → 𝑦𝑥 )
61 44 45 47 48 60 6 dprdcntz ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → ( 𝑆𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑥 ) ) )
62 43 61 eqsstrd ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐷 ) → ( ( 𝑆𝐷 ) ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆𝑥 ) ) )
63 24 36 41 62 dprdlub ( ( 𝜑𝑥𝐶 ) → ( 𝐺 DProd ( 𝑆𝐷 ) ) ⊆ ( 𝑍 ‘ ( 𝑆𝑥 ) ) )
64 6 26 30 63 cntzrecd ( ( 𝜑𝑥𝐶 ) → ( 𝑆𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) )
65 21 64 eqsstrd ( ( 𝜑𝑥𝐶 ) → ( ( 𝑆𝐶 ) ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) )
66 8 13 19 65 dprdlub ( 𝜑 → ( 𝐺 DProd ( 𝑆𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆𝐷 ) ) ) )