Metamath Proof Explorer


Theorem dprddomcld

Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)

Ref Expression
Hypotheses dprddomcld.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprddomcld.2 ( 𝜑 → dom 𝑆 = 𝐼 )
Assertion dprddomcld ( 𝜑𝐼 ∈ V )

Proof

Step Hyp Ref Expression
1 dprddomcld.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprddomcld.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 df-nel ( dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V )
4 dprddomprc ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 )
5 3 4 sylbir ( ¬ dom 𝑆 ∈ V → ¬ 𝐺 dom DProd 𝑆 )
6 5 con4i ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V )
7 eleq1 ( dom 𝑆 = 𝐼 → ( dom 𝑆 ∈ V ↔ 𝐼 ∈ V ) )
8 6 7 syl5ib ( dom 𝑆 = 𝐼 → ( 𝐺 dom DProd 𝑆𝐼 ∈ V ) )
9 2 1 8 sylc ( 𝜑𝐼 ∈ V )