Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprddomcld.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
dprddomcld.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
Assertion | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprddomcld.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
2 | dprddomcld.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
3 | df-nel | ⊢ ( dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V ) | |
4 | dprddomprc | ⊢ ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 ) | |
5 | 3 4 | sylbir | ⊢ ( ¬ dom 𝑆 ∈ V → ¬ 𝐺 dom DProd 𝑆 ) |
6 | 5 | con4i | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
7 | eleq1 | ⊢ ( dom 𝑆 = 𝐼 → ( dom 𝑆 ∈ V ↔ 𝐼 ∈ V ) ) | |
8 | 6 7 | syl5ib | ⊢ ( dom 𝑆 = 𝐼 → ( 𝐺 dom DProd 𝑆 → 𝐼 ∈ V ) ) |
9 | 2 1 8 | sylc | ⊢ ( 𝜑 → 𝐼 ∈ V ) |