Metamath Proof Explorer


Theorem dprddomprc

Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019)

Ref Expression
Assertion dprddomprc ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 )

Proof

Step Hyp Ref Expression
1 df-nel ( dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V )
2 dmexg ( 𝑆 ∈ V → dom 𝑆 ∈ V )
3 2 con3i ( ¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V )
4 1 3 sylbi ( dom 𝑆 ∉ V → ¬ 𝑆 ∈ V )
5 reldmdprd Rel dom DProd
6 5 brrelex2i ( 𝐺 dom DProd 𝑆𝑆 ∈ V )
7 4 6 nsyl ( dom 𝑆 ∉ V → ¬ 𝐺 dom DProd 𝑆 )