Step |
Hyp |
Ref |
Expression |
1 |
|
dprdf1.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdf1.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdf1.3 |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
4 |
|
f1f |
⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
5 |
|
frn |
⊢ ( 𝐹 : 𝐽 ⟶ 𝐼 → ran 𝐹 ⊆ 𝐼 ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐼 ) |
7 |
1 2 6
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ) |
9 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
10 |
9 6
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ ran 𝐹 ) : ran 𝐹 ⟶ ( SubGrp ‘ 𝐺 ) ) |
11 |
10
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ ran 𝐹 ) = ran 𝐹 ) |
12 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) |
14 |
8 11 13
|
dprdf1o |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ∧ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) |
16 |
|
ssid |
⊢ ran 𝐹 ⊆ ran 𝐹 |
17 |
|
cores |
⊢ ( ran 𝐹 ⊆ ran 𝐹 → ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) |
19 |
15 18
|
breqtrdi |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ) |
20 |
18
|
oveq2i |
⊢ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) |
21 |
14
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
22 |
20 21
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
23 |
7
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
24 |
22 23
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
25 |
19 24
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |