Metamath Proof Explorer


Theorem dprdf1

Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdf1.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdf1.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdf1.3 ( 𝜑𝐹 : 𝐽1-1𝐼 )
Assertion dprdf1 ( 𝜑 → ( 𝐺 dom DProd ( 𝑆𝐹 ) ∧ ( 𝐺 DProd ( 𝑆𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 dprdf1.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdf1.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdf1.3 ( 𝜑𝐹 : 𝐽1-1𝐼 )
4 f1f ( 𝐹 : 𝐽1-1𝐼𝐹 : 𝐽𝐼 )
5 frn ( 𝐹 : 𝐽𝐼 → ran 𝐹𝐼 )
6 3 4 5 3syl ( 𝜑 → ran 𝐹𝐼 )
7 1 2 6 dprdres ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) )
8 7 simpld ( 𝜑𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) )
9 1 2 dprdf2 ( 𝜑𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )
10 9 6 fssresd ( 𝜑 → ( 𝑆 ↾ ran 𝐹 ) : ran 𝐹 ⟶ ( SubGrp ‘ 𝐺 ) )
11 10 fdmd ( 𝜑 → dom ( 𝑆 ↾ ran 𝐹 ) = ran 𝐹 )
12 f1f1orn ( 𝐹 : 𝐽1-1𝐼𝐹 : 𝐽1-1-onto→ ran 𝐹 )
13 3 12 syl ( 𝜑𝐹 : 𝐽1-1-onto→ ran 𝐹 )
14 8 11 13 dprdf1o ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ∧ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) )
15 14 simpld ( 𝜑𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) )
16 ssid ran 𝐹 ⊆ ran 𝐹
17 cores ( ran 𝐹 ⊆ ran 𝐹 → ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆𝐹 ) )
18 16 17 ax-mp ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆𝐹 )
19 15 18 breqtrdi ( 𝜑𝐺 dom DProd ( 𝑆𝐹 ) )
20 18 oveq2i ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆𝐹 ) )
21 14 simprd ( 𝜑 → ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) )
22 20 21 eqtr3id ( 𝜑 → ( 𝐺 DProd ( 𝑆𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) )
23 7 simprd ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) )
24 22 23 eqsstrd ( 𝜑 → ( 𝐺 DProd ( 𝑆𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) )
25 19 24 jca ( 𝜑 → ( 𝐺 dom DProd ( 𝑆𝐹 ) ∧ ( 𝐺 DProd ( 𝑆𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) )