| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdf1.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 2 |
|
dprdf1.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 3 |
|
dprdf1.3 |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
| 4 |
|
f1f |
⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
| 5 |
|
frn |
⊢ ( 𝐹 : 𝐽 ⟶ 𝐼 → ran 𝐹 ⊆ 𝐼 ) |
| 6 |
3 4 5
|
3syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐼 ) |
| 7 |
1 2 6
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ) |
| 9 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
9 6
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ ran 𝐹 ) : ran 𝐹 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
10
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ ran 𝐹 ) = ran 𝐹 ) |
| 12 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) |
| 14 |
8 11 13
|
dprdf1o |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ∧ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) |
| 16 |
|
ssid |
⊢ ran 𝐹 ⊆ ran 𝐹 |
| 17 |
|
cores |
⊢ ( ran 𝐹 ⊆ ran 𝐹 → ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) |
| 19 |
15 18
|
breqtrdi |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ) |
| 20 |
18
|
oveq2i |
⊢ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) |
| 21 |
14
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
| 22 |
20 21
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
| 23 |
7
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 24 |
22 23
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 25 |
19 24
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |